

Project Partners: ATB, Electrolux, IKERLAN, OAS, ONA, The Open Group, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SAFIRE Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the SAFIRE Project Partners.

Project Number 723634

D4.4 Full Prototype of
Situational Awareness Services

Version 1.0

20 December 2018

Final

Public Distribution

ATB

D4.4 Full Prototype of Situational Awareness Services

Page ii Version 1.0 20 December 2018

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Electrolux Italia

Claudio Cenedese

Corso Lino Zanussi 30

33080 Porcia

Italy

Tel: +39 0434 394907

E-mail: claudio.cenedese@electrolux.it

IKERLAN

Trujillo Salvador

P Jose Maria Arizmendiarrieta

20500 Mondragon

Spain

Tel: +34 943 712 400

E-mail: strujillo@ikerlan.es

OAS

Karl Krone

Caroline Herschel Strasse 1

28359 Bremen

Germany

Tel: +49 421 2206 0

E-mail: kkrone@oas.de

ONA Electroerosión

Jose M. Ramos

Eguzkitza, 1. Apdo 64

48200 Durango

Spain

Tel: +34 94 620 08 00

jramos@onaedm.com

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of York

Leandro Soares Indrusiak

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325 570

E-mail: leandro.indrusiak@york.ac.uk

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Template creation 2 November 2018

0.2 First Content 13 November 2018

0.3 Additional Content 16 November 2018

0.4 Add OAS specifics 22 November 2018

0.5 Add ONA specifics 30 November 2018

0.6 Update document structure 5 December 2018

0.7 Add Electrolux specifics 11 December 2018

0.8 Internal Review 14 December 2018

1.0 Final Version 20 December 2018

D4.4 Full Prototype of Situational Awareness Services

Page iv Version 1.0 20 December 2018

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Overview .. 1

1.2 Approach Applied .. 1

1.3 Progress beyond D4.3 ... 2

1.4 Document Structure ... 2

2. Situation Awareness Services ... 3

2.1 Data Ingestion to Situation Determination Services ... 4

2.2 Situation Monitoring ... 4

2.3 Situation Determination .. 5

2.4 Situation Model ... 5

2.5 Implementation of the Repository .. 6

2.6 Implemented Functionalities ... 6

3. Integration with other Modules ... 7

3.1 Metrics API.. 8

3.2 Integration with Optimisation Engine ... 9

3.3 Integration with Predictive Analytics .. 9

4. Installation, Configuration and Usage... 9

4.1 Installation... 9
4.1.1 Standalone installation .. 9
4.1.2 Docker container deployment ... 10

4.2 Configuration .. 10
4.2.1 Services Configuration .. 10
4.2.2 Monitoring Configuration ... 11

5. Business Case specific customisation ... 12

5.1 OAS.. 12
5.1.1 Data Ingestion ... 12
5.1.2 Situation Monitoring ... 14
5.1.3 Situation Determination .. 17

5.2 Electrolux .. 20
5.2.1 Data Ingestion ... 20
5.2.2 Situation Monitoring ... 21
5.2.3 Situation Determination .. 23

5.3 ONA ... 25
5.3.1 Data Ingestion ... 25
5.3.2 Situation Monitoring ... 27
5.3.3 Situation Determination .. 30

6. Software tools used for implementation .. 32

7. Conclusions .. 32

8. Appendix .. 34

8.1 Business Case Specific Situation Models .. 34

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page v

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This document provides the full prototype of situational awareness services and the

situation model composed in the situation determination module as part of the

SAFRIRE solution. This module processes data coming from connected systems /

devices / products (data producers) to extract the current situation of these connected

systems / devices / products. The document briefly describes the implemented services

and functionalities of the FP of situational awareness services. Further, an overview

about the additional functionalities compared to the EP is given. The next section gives

guidelines on how to install and configure these services is described.

A description of the business case specific customisations for the SAFIRE industrial use

cases is given in Section 5. Finally, the deliverable gives an overview about the

software tools and frameworks used for implementation is presented.

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW

The Situation Determination services were implemented based on:

 the first results from Business Cases Requirements and Analysis (WP1),

 the results from the SAFIRE Concept (WP1),

 the specification of Situational Awareness Services (WP4) and

 the methodology for Situational Awareness (WP4).

1.2 APPROACH APPLIED

For each of the main technologies in SAFIRE the same approach is followed and that is

to start by analysing the requirements collected at Business Case requirements and

analysis phase, detailing these and from there derive the data model, functional

specification, external interfaces, and technical specification.

The general approach followed to write the current document can be seen in Figure 1.

Figure 1: Approach followed for Full Prototype of Situational Awareness Services

D4.4 Full Prototype of Situational Awareness Services

Page 2 Version 1.0 20 December 2018

Confidentiality: Public Distribution

1.3 PROGRESS BEYOND D4.3

The progress beyond the early prototype (D4.3), documented in this deliverable, is

introduced in the following.

 Situational Model - the situation models were reviewed to model more

accurately the environment of operation of the SAFIRE solution so that it allows

for situational awareness. The BC specific extensions of the Situation Model have

been extended to included concepts required for the Factory Description

Language (FDL) (see WP3).

 Situation Monitoring – The full implementation of the monitoring services was

realised according to the requirements and the final specification.

 Situation Determination services – are implemented and intgegrated according

to the requirements and specification.

 Integration of Security – the full prototype specification integrates the SAFIRE

Security, Privacy and Trust (SPT) framework into the situation monitoring and

situation determination services.

 Integration of the Optimisation Engine and Predictive Analytics Module –

the full prototype refines integration and the communication between the

Situational Awareness Services and the Optimisation Engine according to a

Metrics API defined by the Optimisation Engine. The integration with the

Predictive Analytics is also realised using Kafka as communication channel to

send Predictive Analytics results to Situational Awareness Services via defined

Kafka topic strings.

1.4 DOCUMENT STRUCTURE

The document consists of:

 Section 1. Introduction, which describes the purpose of this document, and

provides a brief overview of the contents of the document.

 Section 2. Description of the Full Prototype (FP) implementation of the Situation

Determination Services including the Situation Model.

 Section 3. Overview about the integration with other modules.

 Section 4. Brief description on how to install and configure the Situation

Determination Services.

 Section 5. Describes the specific customisation for the SAFIRE business cases.

 Section 6. Presents the Software tools used for implementation

 Section 7. Conclusions and wrap up of the deliverable

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 3

Confidentiality: Public Distribution

2. SITUATION AWARENESS SERVICES

The Situation Determination allows for identifying changes in the situations of the

environment. The current identified situation is used to support the optimisation /

reconfiguration.

Figure 2: Conceptual Situational Awareness Architecture

The Situation Determination uses monitored “raw data” provided by the SAFIRE data

ingestion NiFi templates, which get data directly from the legacy systems, or the

predictive analytics for the product and processes, as well as knowledge available in

different systems, to derive the product/machine/process current situation. Using the

situation model the monitored data are being evaluated and the situation determined.

The workflow of the Situation Determination Services from data acquisition to the

publication of the situation to the other modules, is presented in the following figure.

Figure 3: Situation Determination Workflow

As shown in the picture above, the Situation Determination Services receive the factory

or product data through the data ingestion services using NiFi and Kafka. The Situation

Monitoring part receives and structures the data accordingly, and forwards them in the

appropriate format to the Determination part for situation identification. Using

reasoning techniques, the Determination part refines the situation identification and

Situational Awareness Architecture

Situation

Provision

Situation

Determination

Situation

Monitor

Data Ingestion

Optimisation

Engine

D4.4 Full Prototype of Situational Awareness Services

Page 4 Version 1.0 20 December 2018

Confidentiality: Public Distribution

publishes the result to the Kafka messaging system, where it becomes available to the

other modules of the SAFIRE solution.

In more detail, the Situation Determination Services workflow is being described in the

following sections.

2.1 DATA INGESTION TO SITUATION DETERMINATION SERVICES

Apache NiFi is used as a part of data injection to the SAFIRE modules. The NiFi

processors support reading data from different data sources and can be configured to

read the data periodically or to read only the new data. With this configurations NiFi

can be adjusted to have the optimal reading pattern for each type of data.

As Business Case (BC)-specific configuration (explained in detail in chapter 5), in the

case of OAS, NiFi is used to read the contents of the Orders table in the database only

once, and the contents of the Mixer Status table periodically to have all the relevant

information. In the case of Electrolux, the Microsoft Excel files serve as data source.

NiFi processors are used to read the contents of a given folder and to extract the data

spreadsheets from the Excel columns. This happens only once to avoid duplicate and

irrelevant data, and is updated with the new files as long as those are saved in the given

repository. In the ONA case, NiFi is used for the combination of database reading and

ONA-cloud API-connection. To prevent duplicates, only the new data are being read.

These examples show that the relevant data are being read from different sources and

the reading schemas must be configured differently according to the use case. The read

data also must be formatted and sent to respective Kafka topics. NiFi offers good

configuration possibilities to ensure the needed reading and transformation.

2.2 SITUATION MONITORING

The Situation Monitoring part of the services is responsible for feeding the module with

the SAFIRE data, by using a Kafka for communication. To create a general solution for

the communication with Kafka, the Kafka Monitor class was created in the Situation

Monitoring part. The monitors (one monitor for each monitored case) continuously

check the relevant topics for the new data provided by the data ingestion module(s). The

implementation of the Monitor class is generic and can be used for any business case,

because it implements the key behaviour of a Kafka consumer: reading from the given

topics periodically. If new data are available, the monitored data are being transformed

into a data format that is usable by Situation Determination and send to the Situation

Determination service.

Docker configuration

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 5

Confidentiality: Public Distribution

The Situation monitoring module is set up to be deployed in a Docker container and run

the corresponding jar executable. Therefore a docker-maven-plugin was used
1
, allowing

an implicit configuration of the Docker container out of the maven environment. At the

moment the Situation monitoring container is set up to run on ATB’s Docker host

machine, to be reached under http://192.168.15.17:2376.

2.3 SITUATION DETERMINATION

The Situation Determination Service continuously listens for monitored data provided

by the Situation Monitoring service. If new monitoring data are available, Situation

Determination tries to identify the current situation based on the monitored data, the

situation model and previously stored identified situations. The current identified

situation is stored in the Situation Repository. Furthermore, the current identified

situation is posted as a kafka topic into the SAFIRE kafka cluster.

Docker configuration

The Situation determination module is set up to be deployed in a Docker container and

run the corresponding jar executable. At the moment the Situation determination

container is set up to run on ATB’s Docker host machine, to be reached under

http://192.168.15.17:2376.

2.4 SITUATION MODEL

The SAFIRE situation model is modelled in OWL, which is an open standard ontology

modelling language. This allows the use of tools such as Protégé to develop and manage

the ontology, as well as query and manipulate it through RDF compatible methods and

tools such as Jena, SPARQL, etc.

The situation model for the full prototype supports the core concepts of Activity, Actor,

Information, Product, Production Process and Resource. For the specific purpose of the

three business cases, mainly the concept Information is extended to include BC-specific

concepts that describe the selected data for the SAFIRE integrated operation of all

modules. The BC-specific situation models can be found in the appendix. Enterprises

can extend the generic or the BC-specific SAFIRE situation models to better suit their

domain, by defining sub-classes for the core concepts (see Section 8 Appendix).

A primary definition of the SAFIRE situation model and more details on its

development, is given in D4.2, and the details of the final version have been described

in D4.5.

1
 https://github.com/fabric8io/docker-maven-plugin

http://192.168.15.17:2376/
http://192.168.15.17:2376/

D4.4 Full Prototype of Situational Awareness Services

Page 6 Version 1.0 20 December 2018

Confidentiality: Public Distribution

2.5 IMPLEMENTATION OF THE REPOSITORY

The Situation Repository is implemented in a layered style. In the vey back end, a

relational database (e.g. MySQL) is used to provide the storage. Above the relational

database, SDB
2
 is used to realize RDF storage and query. Other modules of Situation

Determination Services manipulate and query the repository through a manipulation

layer, which uses Jena API and SPRQL to communicate with SDB. The API provided

by the Situation Manipulation Layer is on a higher level than one which simply adds

and removes RDF statements from the Jena model, such as: create a new situation

instance, delete orphaned information, and update situation resources and so on. This

makes it easier to manipulate situational information inside the repository. Besides, it

also makes sure the Repository is consistent, as all performed operations are controlled

by the manipulation layer.

2.6 IMPLEMENTED FUNCTIONALITIES

All specified functionality for the Full Prototype of the Situational Awareness Module

has been implemented. Some of the already implemented functionality need to be

refined within the development of the Full Prototype. An overview of the functionality,

implemented is listed in the following table.

Table 1: Overview of implemented functionality

No. Requirement Overall
Priority

Status

U54 Able to change existing or adding new

monitoring sources with min. effort

SHALL Implemented.

U55 Able to support collection of environmental

data to identify situations

SHALL Implemented.

U56 Able to support collection of operator’s

behaviours to identify current situation

SHALL Partially Implemented

U57 Able to monitor machine current status data to

identify situation

SHALL Implemented.

U58 Able to monitor machine health status to

identify current situation

SHALL Implemented.

U59 Able to monitor overall equipment

effectiveness (OEE) to identify current situation

SHALL Implemented.

U60 Able to monitor production status to identify

current situation

SHALL Implemented.

U61 Able to support collection of data from proNTo

behaviours to identify current situation

SHALL Implemented.

Situation can be identified for selected

behaviours, such as Mixer availability and

production orders.

2
 http://openjena.org/SDB/

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 7

Confidentiality: Public Distribution

U62 Able to monitor Hob Temperature status to

identify current situation

SHALL Partially Implemented. Currently supports

Electrolux lab environment.

U63 Able to monitor Pot Boiling status to identify

current situation

SHALL Partially Implemented. Currently supports

Electrolux lab environment.

U64 Able to provide situational information based

on raw and monitored data

SHALL Implemented.

U65 Able to extract situational information from

monitored machines

SHALL Implemented.

U66 Able to dynamically extract situational

information from sensor data

SHALL Implemented.

U67 Able to change existing or add new situations

with minimal effort

SHALL Implemented.

U68 Able to model situations under which a set of

machines is operating

SHALL Implemented

U69 Able to model situations under which a

production process is operating

SHALL Implemented

U70 Able to extract situational information from

sets of related machines

SHOULD Implemented

U71 Able to extract situational information from

operator actions

SHOULD Partially implemented. Currently supports

OAS lab environment.

U72 Able to evaluate situation with respect to

capacity, performance, availability (OEE) of

monitored machines

SHALL Not implemented yet

U73 Able to evaluate situation with respect to

capacity, performance, availability (OEE) from

sets of related machines

SHALL Not implemented yet

U74 Able to anticipate alarms before they occur

based on current situation

SHALL Partially implemented. Currently

implemented in OAS lab environment.

U75 Able to evaluate status of machine job queues

(if available)

SHOULD Implemented.

U76 Able to model situation under which proNTo is

operating

SHOULD Implemented using Protégé as modelling

tool

U77 Able to extract situational information from

proNTo and from other systems

SHALL Implemented for proNTo

3. INTEGRATION WITH OTHER MODULES

The Full Prototype of the Situational Awareness services are integrated with the

following modules:

D4.4 Full Prototype of Situational Awareness Services

Page 8 Version 1.0 20 December 2018

Confidentiality: Public Distribution

 Data-Ingestion: The data ingestion modules are kafka producers, that periodically

post information observed from the systems of industrial partners into the

SAFIRE kafka cluster. The following data ingestion modules are available:

 OAS proNTo: The data ingestion module in the OAS case connects to the

Oracle database server of the proNTo system (simulated factory) and ingests

the data required by SAFIRE modules into the kafka cluster.

 ONA Cloud: The data ingestion module in the ONA case connects to the

Oracle database server of the ONA cloud (real machines) and ingests the

data required by SAFIRE modules into the kafka cluster

 Electrolux: The data ingestion module in the Electrolux case connects to the

data provided by the experimental cooker setup. Results are read from

Matlab/CSV files and ingests the data required by SAFIRE modules into the

kafka cluster.

 Metrics API: The main interface for transferring monitored and situational data

between the SD services and the optimisation engine, allowing to build a valid

optimisation configuration which can be parsed by the Optimisation Engine;

described in chapter 3.1.

 Optimisation Engine: The SD services send an optimisation configuration

containing the monitored/situational data via Kafka to the Optimisation Engine

which produces an optimisation result. This result will be fed back to the SD

services via Kafka.

 Predictive Analytics: The SD services receive predictive analytics results from

Kafka and enrich it with recent situational data.

3.1 METRICS API

This section describes the Metrics API as Interface between the SD services and the

Optimisation Engine. The aim of this module is to provide a common interface for

sending monitored and situational data from each BC to the Optimisation Engine. The

following section will briefly show the use of the Metrics API taking the OAS BC as an

example.

Every time the SD service sends monitoring or situational data to the OE a Metrics API

configuration will be constructed. Such a configuration consists of different parameters,

such as the Controlled Metrics, the Key Objective Metrics and the Observable Metrics.

Since the monitored and situational data coming from the legacy systems can be

identified as the observable set of data, The Observable Metrics will contain exactly

these observations. In the OAS BC the observations are the amount of paint to be

produced (resp. amount of paint which already has been produced) and the status of a

mixer. Additionally the Observable Metrics contains the recipe information, i.e. a

mapping of each type of paint to be produced to the mixers, where this specific type of

paint can be produced.

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 9

Confidentiality: Public Distribution

The Key Objective Metrics refers to the Key Objective function of the OE. It contains

the optimisation objective, i.e. in the OAS BC the minimisation of the surplus and

makespan for each produced paint.

The Controlled Metrics defines the parameter which can be controlled in order to

achieve the optimisation objective, i.e. the assignment of mixers to the type of paint to

be produced at a specific time.

3.2 INTEGRATION WITH OPTIMISATION ENGINE

The integration between the SD services and the Optimisation Engine is being realised

by sending a valid optimisation configuration built accordingly to the Metrics API to a

specific Kafka topic.

3.3 INTEGRATION WITH PREDICTIVE ANALYTICS

The integration between the SD services and the Predictive Analytics module is being

realised by receiving predictive analytics results in JSON format from a specific Kafka

topic, which will then be processed with recent situational data and send back into

Kafka for further usage.

4. INSTALLATION, CONFIGURATION AND USAGE

This section describes the installation, configuration and usage of the Full Prototype of

the Situational Awareness module. The business case specific customisation is

described in Section 5.

4.1 INSTALLATION

The Full Prototype requires Java and Apache Kafka as prerequisites. The installation of

Apache Kafka is described in D2.3 Early Prototype of Predictive Analytics Platform

and therefore not repeated in this deliverable. The Full Prototype can also be deployed

as Docker container.

The next sections describe the installation and configuration of both Situational

Awareness services.

4.1.1 Standalone installation

The Situation Monitoring and Situation Determination services can be downloaded

from https://www.atb-bremen.de/artifactory/ext-releases-local/eu/safire-project/

D4.4 Full Prototype of Situational Awareness Services

Page 10 Version 1.0 20 December 2018

Confidentiality: Public Distribution

The Situational Awareness service are available in customised versions for the three

SAFIRE business cases, hence the naming of the executables is accordingly. After

downloading the jar files for monitoring and determination, the services can be started

with the following commands:

java -jar situation-monitoring-xxx-1.0.0.jar
java -jar situation-determination-xxx-1.0.0.jar

 where “xxx” has to be replaced by either “oas”, “electrolux” or “ona”.

4.1.2 Docker container deployment

The docker containers for Situation Monitoring and Situation Determination can be

downloaded from http://gitlab.atb-bremen.de by using the following commands:

docker pull gitlab.atb-bremen.de:5555/safire/context-monitoring
docker pull gitlab.atb-bremen.de:5555/safire/context-dtermination

After downloading the container image, it can be started with:

docker start situation-monitoring
docker start situation-determination

In the docker registry two business case specific container images are available, which

can be used for the OAS and ONA use case.

4.2 CONFIGURATION

The Situation Monitoring service and the Situation Determination service need to be

executed prior to its execution. The following two subsections describe the

configuration of the services as well as the configuration of the business case specific

Situation Monitoring customisations.

4.2.1 Services Configuration

The Situation Monitoring as well as the Situation Determination service will be

configured through an XML configuration file. An example for such a configuration can

be seen in the following listing:

<?xml version="1.0" encoding="utf-8"?>
<config xmlns="http://www.atb-bremen.de" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <services>
 <service id="Monitoring">
 <host>localhost</host>
 <location>http://localhost:19001</location>
 <name>MonitoringService</name>

http://gitlab.atb-bremen.de/

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 11

Confidentiality: Public Distribution

 <server>de.atb.context.services.MonitoringService</server>
 <proxy>de.atb.context.services.IMonitoringService</proxy>
 </service>
 <service id="MonitoringRepository">
 <host>localhost</host>
 <location>http://localhost:19002</location>
 <name>MonitoringDataRepositoryService</name>
 <server>de.atb.context.services.MonitoringDataRepositoryService</server>
 <proxy>de.atb.context.services.IMonitoringDataRepositoryService</proxy>
 </service>
 <service id="SituationDeterminationService">
 <host>localhost</host>
 <location>http://localhost:19004</location>
 <name>ContextExtractionService</name>
 <server>de.atb.context.services.ContextExtractionService</server>
 <proxy>de.atb.context.services.IContextExtractionService</proxy>
 </service>
 <service id="SituationDeterminationRepositoryService">
 <host>localhost</host>
 <location>http://localhost:19005</location>
 <name>ContextRepositoryService</name>
 <server>de.atb.context.services.ContextRepositoryService</server>
 <proxy>de.atb.context.services.IContextRepositoryService</proxy>
 </service>
 </services>
</config>

Code 1 – Example of Situation Awareness Service Configuration

4.2.2 Monitoring Configuration

As described in the previous sections, the Situation Monitoring need to be customised

per Business Case to allow gathering of information, that are specific for each

installation. A description on how to customise the Situation Monitoring is presented in

D4.2. The following listing, gives an example on how to configure the Situation

Monitoring service, so that it uses the business case specific extensions:

<?xml version="1.0" encoding="utf-8"?>
<config xmlns="http://www.atb-bremen.de"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.atb-bremen.de monitoring-config.xsd">
 <indexes>
 <index id="index-ona" location="indexes/ona"></index>
 </indexes>
 <datasources>
 <datasource id="datasource-ona" type="webservice"
 monitor="de.atb.context.monitoring.monitors.webservice.WebServiceMonitor"
 uri=" https://onaedm.savvyds.com/ic/"
 options="username&password"
 class="de.atb.context.monitoring.config.models.datasources.WebServiceDataSource"
 />
 </datasources>
 <interpreters>
 <interpreter id="interpreter-ona">
 <configuration type="*"
 parser="de.atb.context.monitoring.parser.onacloud.ONACloudParser"
 analyser="de.atb.context.monitoring.analyser.onacloud.ONACloudAnalyser" />
 </interpreter>

D4.4 Full Prototype of Situational Awareness Services

Page 12 Version 1.0 20 December 2018

Confidentiality: Public Distribution

 </interpreters>
 <monitors>
 <monitor id="monitor-ona" datasource="datasource-ona"
 interpreter="interpreter-ona"
 index="index-ona" />
 </monitors>
</config>

Code 2 – Example Monitoring Plugin Configuration

5. BUSINESS CASE SPECIFIC CUSTOMISATION

5.1 OAS

5.1.1 Data Ingestion

For the data ingestion of the OAS case a specific NiFi template with the necessary

processors has been developed (see Figure 4). The goal of the OAS NiFi template is to

gather information related to the paint production process, i.e. information about the

current status of mixers, recent orders and (historical) batch data. The goal of the OAS

template is to connect to the ProNTo database and retrieve data for each required

database table. The connection will be established via the Oracle database driver, hence

QueryDatabaseTable processors are being used to build the connection. At the moment

the processors are configured for pulling data each n seconds, where n can be modified

within the QueryDatabaseTable processor (default: 10 seconds). The retrieved data will

then be further processed, converted into readable JSON format and published into

Kafka. See Figure 5 for the Nifi template for gathering the (historical) batch data,

Figure 6 for the template to acquire the current mixer status, and Figure 7 for the current

orders of paint to be produced.

Figure 4: NiFi Template Groups for the OAS Data Ingestion Module

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 13

Confidentiality: Public Distribution

Figure 5: OAS NiFi Template for the Daily View Data

Figure 6: OAS NiFi Template for the Mixer Status Data

Figure 7: OAS NiFi Template for the Orders Data

D4.4 Full Prototype of Situational Awareness Services

Page 14 Version 1.0 20 December 2018

Confidentiality: Public Distribution

5.1.2 Situation Monitoring

5.1.2.1 OAS Monitor

The OAS monitor observes the data in the OAS proNTo system for situational changes.

proNTo acts as a manufacturing execution system (MES) but covers also features of

supervisory control and data acquisition (SCADA) systems and Enterprise-Resource-

Planning (ERP) systems.

The proNTo database stores and manages all kinds of data in the proNTo system (live,

master and historical/protocol data). Examples are:

 Batch protocols - Information about (timestamps; executed process steps;

comparing actual versus target measurements; used production lines, etc.)

 Product Recipes - Information about how to produce specific products (defined

Processes; needed materials; mixing ratio of materials; etc.)

 Status information - Information about the current abilities and status of the

factory (e.g. which product recipe is free/approved to use on which lines)

The Full Prototype of the OAS monitor reads data from an Apache kafka node. The data

ingestion module establishes the direct connection to the proNTo system using NiFi and

sends needed information into the kafka node. The OAS monitor reads the data from the

kafka node. See Figure 8 for an overview.

Figure 8: Data transfer from the OAS proNTo system to the OAS monitor

The Full Prototype of the OAS monitor has a permanent loop of watching the current

mixers status and the orders to be done for the current day. The following message

snippets show some examples for data monitored by the OAS monitor.

Current mixer status

Kafka topic: ResourceAvailability

Data in kafka:

[
MonitoredMixerStatusInformation{ID='1', m_name='Mischer 1', m_status='1'},
MonitoredMixerStatusInformation{ID='3', m_name='Mischer 3', m_status='1'},
MonitoredMixerStatusInformation{ID='5', m_name='Mischer 5', m_status='1'},

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 15

Confidentiality: Public Distribution

MonitoredMixerStatusInformation{ID='2', m_name='Mischer 2', m_status='1'},
MonitoredMixerStatusInformation{ID='4', m_name='Mischer 4', m_status='1'},
MonitoredMixerStatusInformation{ID='6', m_name='Mischer 6', m_status='1'},
MonitoredMixerStatusInformation{ID='7', m_name='Mischer 7', m_status='1'},
MonitoredMixerStatusInformation{ID='8', m_name='Mischer 8', m_status='1'},
]

Code 3: kafka data for mixer status

Orders

Kafka topic: OrderDataTopic

Data in kafka:

[
MonitoredOrdersInformation{ID='1', ord_name='Std Weiss', ord_amount='145000'},
MonitoredOrdersInformation{ID='2', ord_name='Weiss Matt', ord_amount='165000'},
MonitoredOrdersInformation{ID='4', ord_name='Weiss Basis', ord_amount='126000'},
MonitoredOrdersInformation{ID='3', ord_name='W Super Glanz', ord_amount='56000'}
]

Code 4: kafka data for orders

Data model

At the moment, two data classes are used, which hold the information about the

monitored data from the proNTo system matching the mixer status and orders. Figure 9

shows the relationship between the different data classes: The class ProntoDataModel

holds the main proNTo data model, which is being specified in detail within the

ProntoInstance, which on its part holds a relation to the both data classes

MonitoredMixerStatusInformation and MonitoredOrderInformation. The last two

classes contain the sensor information from a proNTo machine.

MonitoredMixerStatusInformation: Currently, the ID, the mixer’s name and its status

is being monitored.

MonitoredOrderInformation: Currently, the Order ID, the name of the order and the

amount for this specific order is being monitored.

D4.4 Full Prototype of Situational Awareness Services

Page 16 Version 1.0 20 December 2018

Confidentiality: Public Distribution

Figure 9: Data model for monitored mixer status and orders

Monitor Implementation

For the monitoring process of the proNTo BC a Database Monitor is being used, as the

sensor data from the proNTo Legacy Systems is being stored within a database. Figure

10 shows the relationship and inheritance between the ProntoAnalyser and the more

generic DatabaseAnalyser. The main task of the ProntoAnalyser is to gather

information about the mixer status and orders from the database. According to the

architecture the data will be fetched from a Kafka Cluster. Therefore, Kafka Consumers

for the different data topics are being instantiated, who are continuously polling data

from the cluster. The data are being transferred into the data model shown in Figure 9

and thereafter stored in the Monitoring Repository.

Figure 10: Inheritance structure of the Analyser used for proNTo

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 17

Confidentiality: Public Distribution

Detailed Data Flow

Figure 11 shows a detailed overview of the dataflow between the legacy system, NiFi,

Kafka and the situation awareness, optimisation and visualization modules. All data

processing is done via the Kafka cluster. As seen in the figure, the order information

and mixer status are being processed by NiFi and have their corresponding topic within

the Kafka node, which will be monitored subsequently by the Situation Awareness

module. Additionally, historical batch data from the proNTo database will be shown in

a graphical calendar representation by a visualisation module. This module will also

receive the analysed data from the Optimisation Engine with an optimized Batch

scheduling for the monitored orders.

Figure 11: Detailed Data Flow for the OAS scenario

5.1.3 Situation Determination

5.1.3.1 OAS Situation Identification

The OAS specific implementation of the ContextIdentifier executes SPARQL queries to

identify data from the monitored Situation Monitoring service. Code 5 below shows an

example of a monitored data item, that is used to identify Situations.

...
 <rdf:Description rdf:about="#MonitoredMixerStatusInformation/275807757">
 <oas:m_status rdf:datatype="#long">-1</oas:m_status>
 <oas:m_name rdf:datatype="#string">Mischer 5</oas:m_name>
 <oas:id rdf:datatype="#long">5</oas:id>
 <rdf:type rdf:resource="#MonitoredMixerStatusInformation"/>
 </rdf:Description>
 <rdf:Description rdf:about="#MonitoredMixerStatusInformation/416448361">
 <oas:m_status rdf:datatype="#long">1</oas:m_status>
 <oas:m_name rdf:datatype="#string">Mischer 10</oas:m_name>
 <oas:id rdf:datatype="#long">210</oas:id>
 <rdf:type rdf:resource="#MonitoredMixerStatusInformation"/>

proNTo database
DAILY_VIEW

Nifi

ORDERS MIXER_STATUS

Kafka
OrderDataTopic MixerDataTopicHistoricalDataTopic

Situational Awareness

Optimisation Engine

Batch Scheduling

Visualization

ResourceAvailability

Orders

Metrics API

Metrics API

OptimisationResult

D4.4 Full Prototype of Situational Awareness Services

Page 18 Version 1.0 20 December 2018

Confidentiality: Public Distribution

 </rdf:Description>
 <rdf:Description rdf:about="#MonitoredMixerStatusInformation/59758731">
 <oas:m_status rdf:datatype="#long">1</oas:m_status>
 <oas:m_name rdf:datatype="#string">Mischer 10</oas:m_name>
 <oas:id rdf:datatype="#long">210</oas:id>
 <rdf:type rdf:resource="#MonitoredMixerStatusInformation"/>
 </rdf:Description>
...
 <rdf:Description rdf:nodeID="A1">
 <rdf:_5 rdf:resource="#MonitoredMixerStatusInformation/275807757"/>
 <rdf:_4 rdf:resource="#MonitoredMixerStatusInformation/567702719"/>
 <rdf:_10 rdf:resource="#MonitoredMixerStatusInformation/1718853555"/>
 <rdf:_12 rdf:resource="#MonitoredMixerStatusInformation/2077540885"/>
 <rdf:_20 rdf:resource="#MonitoredMixerStatusInformation/416448361"/>
 <rdf:_8 rdf:resource="#MonitoredMixerStatusInformation/820578646"/>
 <rdf:_22 rdf:resource="#MonitoredMixerStatusInformation/35181829"/>
 <rdf:_19 rdf:resource="#MonitoredMixerStatusInformation/238720618"/>
 <rdf:_3 rdf:resource="#MonitoredMixerStatusInformation/1783590156"/>
 <rdf:_14 rdf:resource="#MonitoredMixerStatusInformation/1994882064"/>
 <rdf:_18 rdf:resource="#MonitoredMixerStatusInformation/144902456"/>
 <rdf:_2 rdf:resource="#MonitoredMixerStatusInformation/244690718"/>
 <rdf:_15 rdf:resource="#MonitoredMixerStatusInformation/198293959"/>
 <rdf:_9 rdf:resource="#MonitoredMixerStatusInformation/595233104"/>
 <rdf:_6 rdf:resource="#MonitoredMixerStatusInformation/859758146"/>
 <rdf:_17 rdf:resource="#MonitoredMixerStatusInformation/1172961897"/>
 <rdf:_21 rdf:resource="#MonitoredMixerStatusInformation/316859560"/>
 <rdf:_7 rdf:resource="#MonitoredMixerStatusInformation/571011620"/>
 <rdf:_11 rdf:resource="#MonitoredMixerStatusInformation/59758731"/>
 <rdf:_16 rdf:resource="#MonitoredMixerStatusInformation/1447564994"/>
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"/>
 <rdf:_13 rdf:resource="#MonitoredMixerStatusInformation/211018806"/>
 <rdf:_1 rdf:resource="#MonitoredMixerStatusInformation/1838911889"/>
 </rdf:Description>
...

Code 5 – Example of Monitoring Data in RDF representation (excerpt)

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 19

Confidentiality: Public Distribution

Situation Identifier Implementation

The OAS specific implementation of the Situation Determination executes queries, such

as the following:

Select ?mixer ?mixerId ?mixerName ?mixerStatus
where
{
 ?mixer rdf:type oas:Mixer.
 ?mixer oas:MonitoredMixerStatusInformation ?mixerInfo.
 ?mixerInfo oas:m_id ?mixerId.
 ?mixerInfo oas:m_name ?mixerName.
 ?mixerInfo oas:m_status ?mixerStatus.
};

Figure 12 shows the inheritance structure of the OAS specific situation identifier. The

data previously observed by the Situation Monitoring is used to identify the situations

based on the monitored data.

Figure 12: Inheritance structure of the OAS Situation Identifier used for proNTo

5.1.3.2 Rule based reasoning

The OAS specific rules used in the OAS case for situation reasoning is based on the

Jena Inference Engine:

Reasoner ruleReasoner = new GenericRuleReasoner(Rule.rulesFromURL(ruleURL));
InfModel infM = ModelFactory.createInfModel(ruleReasoner, rawModel);

Thereby, the business case specific rules are stored in the ruleURL. Code 6 – shows an

example, which can be explained as “if a production line has a mixer attached to it, and

this mixer is observed by volume sensor which provides a resource identified as volume

in cm
3
, this production line is of type paint production line”.

D4.4 Full Prototype of Situational Awareness Services

Page 20 Version 1.0 20 December 2018

Confidentiality: Public Distribution

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix safire: <http://www.safire-factories.org/base.owl#> .
[rule1: (?a safire:hasDevicePart ?b)
 (?b rdf:type safire:Mixer)
 (?b safire:isObservedBy ?c)
 (?c rdf:type safire:VolumeSensor)
 (?c safire:providesVolume ?d)
 (?d rdf:type safire:CM3)
 -> (?a rdf:type safire:PaintProductionLine)
]

Code 6 – Example Rule for Rule-Based Context Reasoning

5.1.3.3 Situation Provision

The Full Prototype of Situation Determination module sends the identified situation(s)

to the SAFIRE kafka cluster, so that subsequent services can retrieve the situations and

use them for their tasks (e.g. Optimisation Engine).

5.2 ELECTROLUX

5.2.1 Data Ingestion

For the data ingestion of the Electrolux case a specific NiFi template with the necessary

processors has been developed (Figure 13). The goal of the Electrolux template is to

gather information related to cooking processes while using the experimental Electrolux

cooker installation. The data are being produced from the installation and stored in .xlsx

files. The NiFi template reads the data from the new coming files (ListFile processor)

and brings them to a structure ready to convert to the specific data formats (FetchFile

processor), NiFi FlowFiles, which are necessary for the next processors

(ConvertExcelToCSVProcessor, ConvertCSVToAvro, ConvertAvroToJSON) that

promote the data inside the template. The last processor of the template (PublishKafka)

receives the data in the FlowFile and publishes them to Kafka in a predefined topic (e.g.

elux_data_topic). When published to Kafka, the ingested data are available to all

SAFIRE modules to receive for their internal processing.

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 21

Confidentiality: Public Distribution

Figure 13: NiFi Template for the Electrolux Data Ingestion Module

5.2.2 Situation Monitoring

5.2.2.1 Electrolux Monitor

The Electrolux monitor observes the data from cookers. An example for information

observed by the Electrolux Monitor is:

 Cooker Status – Information about the status of a cooker. It contains information

about the energy, type of pot, amount of water used.

Figure 14: Data transfer to the Electrolux monitor

The Full Prototype of the Electrolux monitor has a permanent loop of watching a folder

in a filesystem for new files, which contain experimental results.

Data model

The class ElecDataModel holds the main data model for the Electrolux business case.

The class MonitoredCookerInformation contains the sensor information from the

Electrolux cookers.

CookerStatusInformation: Currently, the ID, the cookers name, its status, the pot used

and the amount of water is being monitored.

Situational
Monitoring

Situational
Determination

CSV RDF

Experimental Results
stored in CSV files

D4.4 Full Prototype of Situational Awareness Services

Page 22 Version 1.0 20 December 2018

Confidentiality: Public Distribution

Figure 15: Data model for Cooker status

Monitor Implementation

For the monitoring process of the Electrolux BC a Filesystem Monitor is being used, as

the sensor data from the experimental set-ups is stored in CSV files in a file system.

Figure 23 shows the relationship and inheritance between the ElectroluxCSVAnalyser

and the more generic FileAnalyser. The main task of the ElectroluxCSVAnalyser is to

gather information about the cooker status. The data are being transferred into the data

model shown in Figure 23 and thereafter stored in the Monitoring Repository.

Figure 16: Inheritance structure of the Analyser used for Electrolux

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 23

Confidentiality: Public Distribution

5.2.3 Situation Determination

5.2.3.1 Electrolux Situation Identification

The Electrolux specific implementation of the ContextIdentifier executes SPARQL

queries to identify data from the monitored Situation Monitoring service. Code 5 below

shows an example of a monitored data item, that is used to identify Situations.

...
 <rdf:Description rdf:about="#ElectroluxMonitoredInformation/705471857">
 <elux:cur_f06 rdf:datatype="#double">0.0</elux:cur_f06>
 <elux:time rdf:datatype="#double">0.17587581125236543</elux:time>
 <elux:cur_f05 rdf:datatype="#double">0.0</elux:cur_f05>
 <elux:cur_f11 rdf:datatype="#double">0.0</elux:cur_f11>
 <elux:t_coil rdf:datatype="#double">0.0</elux:t_coil>
 <elux:cur_f10 rdf:datatype="#double">0.0</elux:cur_f10>
 <elux:cur_f08 rdf:datatype="#double">0.0</elux:cur_f08>
 <elux:cur_f02 rdf:datatype="#double">0.0</elux:cur_f02>
 <elux:cur_f07 rdf:datatype="#double">0.0</elux:cur_f07>
 <elux:cur_f01 rdf:datatype="#double">0.0</elux:cur_f01>
 <elux:t_water rdf:datatype="#double">100.16326904296875</elux:t_water>
 <elux:cur_f13 rdf:datatype="#double">0.0</elux:cur_f13>
 <elux:cur_f12 rdf:datatype="#double">0.0</elux:cur_f12>
 <elux:cur_f04 rdf:datatype="#double">0.0</elux:cur_f04>
 <elux:cur_f09 rdf:datatype="#double">0.0</elux:cur_f09>
 <elux:cur_f03 rdf:datatype="#double">0.0</elux:cur_f03>
 <elux:energy rdf:datatype="#double">1006.7838700061303</elux:energy>
 <rdf:type rdf:resource="#ElectroluxMonitoredInformation"/>
 </rdf:Description>
 <rdf:Description rdf:about="#ElectroluxMonitoredInformation/847308988">
 <elux:cur_f05 rdf:datatype="#double">0.0</elux:cur_f05>
 <elux:time rdf:datatype="#double">0.19321985970376387</elux:time>
 <elux:cur_f10 rdf:datatype="#double">0.0</elux:cur_f10>
 <elux:cur_f09 rdf:datatype="#double">0.0</elux:cur_f09>
 <elux:cur_f13 rdf:datatype="#double">0.0</elux:cur_f13>
 <elux:cur_f06 rdf:datatype="#double">0.0</elux:cur_f06>
 <elux:t_coil rdf:datatype="#double">0.0</elux:t_coil>
 <elux:cur_f12 rdf:datatype="#double">0.0</elux:cur_f12>
 <elux:energy rdf:datatype="#double">684.3312550976387</elux:energy>
 <elux:cur_f03 rdf:datatype="#double">0.0</elux:cur_f03>
 <elux:cur_f01 rdf:datatype="#double">0.0</elux:cur_f01>
 <rdf:type rdf:resource="#ElectroluxMonitoredInformation"/>
 <elux:cur_f07 rdf:datatype="#double">0.0</elux:cur_f07>
 <elux:cur_f11 rdf:datatype="#double">0.0</elux:cur_f11>
 <elux:cur_f04 rdf:datatype="#double">0.0</elux:cur_f04>
 <elux:cur_f02 rdf:datatype="#double">0.0</elux:cur_f02>
 <elux:t_water rdf:datatype="#double">71.4569091796875</elux:t_water>
 <elux:cur_f08 rdf:datatype="#double">0.0</elux:cur_f08>
 </rdf:Description>
 <rdf:Description rdf:about="#ElectroluxMonitoredInformation/1456717480">
 <elux:cur_f03 rdf:datatype="#double">0.0</elux:cur_f03>
 <elux:cur_f01 rdf:datatype="#double">0.0</elux:cur_f01>
 <elux:t_water rdf:datatype="#double">32.39593505859375</elux:t_water>
 <elux:time rdf:datatype="#double">0.03197233499693058</elux:time>
 <elux:energy rdf:datatype="#double">113.13161745422406</elux:energy>
 <rdf:type rdf:resource="#ElectroluxMonitoredInformation"/>
 <elux:cur_f06 rdf:datatype="#double">0.0</elux:cur_f06>
 <elux:cur_f13 rdf:datatype="#double">0.0</elux:cur_f13>
 <elux:cur_f09 rdf:datatype="#double">0.0</elux:cur_f09>
 <elux:cur_f10 rdf:datatype="#double">0.0</elux:cur_f10>
 <elux:cur_f05 rdf:datatype="#double">0.0</elux:cur_f05>

D4.4 Full Prototype of Situational Awareness Services

Page 24 Version 1.0 20 December 2018

Confidentiality: Public Distribution

 <elux:t_coil rdf:datatype="#double">0.0</elux:t_coil>
 <elux:cur_f12 rdf:datatype="#double">0.0</elux:cur_f12>
 <elux:cur_f08 rdf:datatype="#double">0.0</elux:cur_f08>
 <elux:cur_f04 rdf:datatype="#double">0.0</elux:cur_f04>
 <elux:cur_f02 rdf:datatype="#double">0.0</elux:cur_f02>
 <elux:cur_f11 rdf:datatype="#double">0.0</elux:cur_f11>
 <elux:cur_f07 rdf:datatype="#double">0.0</elux:cur_f07>
 </rdf:Description>
...

Code 7 – Example of Monitoring Data in RDF representation (excerpt)

The Electrolux specific implementation executes queries, such as the following:

Select ?cookerInfo?time ?tempWater ?tempCoil
where
{
 ?mixer rdf:type elux:Cooker.
 ?mixer elux: ElectroluxMonitoredInformation ?cookerInfo.
 ?mixerInfo elux:time ?time.
 ?mixerInfo elux:t_water?tempWater.
 ?mixerInfo elux:t_coil?tempCoil.
};

Situation Identifier Implementation

Figure 17 shows the inheritance structure of the Electrolux specific situation identifier.

The data previously observed by the Situation Monitoring is used to identify the

situations based on the monitored data.

Figure 17: Inheritance structure of the Electrolux Situation Identifier

5.2.3.2 Rule based reasoning

The rule-based Situation Reasoning works similar to the OAS case, see Section 5.1.3.2.

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 25

Confidentiality: Public Distribution

5.2.3.3 Situation Provision

The Situation Provision is working similar to the OAS case, see Section 5.1.3.3.

5.3 ONA

5.3.1 Data Ingestion

The data ingestion module for the ONA case is composed by two different NiFi

template groups (figure Figure 18), namely the Metadata (figure Figure 19) and the

Stream (figure Figure 20) groups. The goal for the Metadata template is to connect to

the ONA cloud API and retrieve the appropriate configuration data that the Stream

template will need to know in order to get the data from the ONA machines. The

Metadata template populates a PostgreSQL database with information regarding the

expected data groups (table “groups”), the required data ids (tables “indicator” and

“selectedIndicator”), the available machines for the SAFIRE user (table “machine”) and

their locations (table “location”), and a lookup table that connects machines and data

groups (table “stream”). Using these database records, the Stream template is being

configured so to retrieve and publish to Kafka only the data necessary for the selected

ONA scenario.

Figure 18: NiFi Template Groups for the ONA Data Ingestion Module

D4.4 Full Prototype of Situational Awareness Services

Page 26 Version 1.0 20 December 2018

Confidentiality: Public Distribution

Figure 19: Metadata Group of the ONA NiFi Template

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 27

Confidentiality: Public Distribution

Figure 20: Stream Group of the ONA NiFi Template

5.3.2 Situation Monitoring

5.3.2.1 ONA Monitor

The ONA monitor observes the data in the ONA cloud platform. The ONA cloud

platform acts as a solution to allow for example machine monitoring, data analysis and

planning of predictive maintenance. Examples are:

 Machine Execution Status – Information about the availability of a machine and

in case it is available, it provides information whether the machine is currently in

production mode or not.

Figure 21: Data transfer from the ONA cloud to the ONA monitor

The Full Prototype of the ONA monitor has a permanent loop of watching the current

machine execution status. The following message snippets show some examples for

data monitored by the ONA monitor.

ONA data ingestion

Situational
Monitoring

Situational
Determination

JSON JSON RDF

D4.4 Full Prototype of Situational Awareness Services

Page 28 Version 1.0 20 December 2018

Confidentiality: Public Distribution

Current machine execution status

Kafka topic: MachineExecutionStatus

Data in kafka:

[
MachineExecutionStatusInformation{ID='1', m_name='AV100-12522', m_status='1',
e_status=’0’},
MachineExecutionStatusInformation {ID='2', m_name='AV25-12149', m_status='1',
e_status=’1’},
MachineExecutionStatusInformation {ID='3', m_name='AV25-666', m_status='1',
e_status=’0’},
]

Code 8: kafka data for machine execution status

Data model

Currently, two data classes are used, which hold the information about the monitored

data from the ONA cloud platform matching the machine execution status. Figure 22

shows the relationship between the different data classes: The class

ONACloudDataModel holds the main ONA cloud data model, which is being specified

in detail within the ONAMachine class, which on its part holds a relation to the data

class MachineExecutionStatusInformation, which in turn contains the sensor

information from ONA machines.

MachineExecutionStatusInformation: Currently, the ID, the machines’s name and its

execution status is being monitored.

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 29

Confidentiality: Public Distribution

Figure 22: Data model for machine execution status

Monitor Implementation

For the monitoring process of the ONA BC a Webservice Monitor is being used, as the

sensor data from the ONA cloud platform is being accessible via a web service-based

API. Figure 23 shows the relationship and inheritance between the ONACloudAnalyser

and the more generic WebServiceAnalyser. The main task of the ONACloudAnalyser is

to gather information about the mixer status and orders from the database. According to

the architecture the data will be fetched from a Kafka Cluster. Therefore, Kafka

Consumers for the different data topics are being instantiated, who are continuously

polling data from the cluster. The data are being transferred into the data model shown

in Figure 23 and thereafter stored in the Monitoring Repository.

Figure 23: Inheritance structure of the Analyser used for ONA cloud platform

Detailed Data Flow

Figure 24 shows a detailed overview of the dataflow between the legacy system, NiFi,

Kafka and the situation awareness modules. All data processing is done via the Kafka

cluster. As seen in the figure, the order information and mixer status are being

processed by NiFi and have their corresponding topic within the Kafka node, which will

be monitored subsequently by the Situation Awareness module.

ONA cloud

Nifi

ORDERS EXECUTION_STATUS

Kafka
OrderDataTopic MixerDataTopicHistoricalDataTopic

Situational Awareness

Optimisation Engine

ResourceAvailability

Orders

Metrics API

OptimisationResult

D4.4 Full Prototype of Situational Awareness Services

Page 30 Version 1.0 20 December 2018

Confidentiality: Public Distribution

Figure 24: Detailed Data Flow for the ONA scenario

5.3.3 Situation Determination

5.3.3.1 ONA Situation Identification

The ONA specific implementation of the ContextIdentifier executes SPARQL queries

to identify data from the monitored Situation Monitoring service. Code 5 below shows

an example of a monitored data item, that is used to identify Situations.

...
 <rdf:Description rdf:nodeID="A0">
 <rdf:_1 rdf:resource="http://atb-bremen.de/bc-ona/OnaMachine/445895563"/>
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A1">
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://atb-bremen.de/bc-ona/OnaMachine">
 <elux:javaclass>de.atb.context.monitoring.models.ona.OnaMachine</elux:javaclass>
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://atb-bremen.de/bc-ona/OnaMachine/445895563">
 <ona:machineExecutionStatusList rdf:nodeID="A1"/>
 <ona:component rdf:datatype="#string"></ona:component>
 <rdf:type rdf:resource="http://atb-bremen.de/bc-ona/OnaMachine"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://atb-bremen.de/bc-ona/OnaDataModel">

<elux:javaclass>de.atb.context.monitoring.models.ona.OnaDataModel</elux:javaclass>
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://thewebsemantic.com/javaclass">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#AnnotationProperty"/>
 </rdf:Description>
...

Code 9 – Example of Monitoring Data in RDF representation (excerpt)

The ONA specific implementation executes queries, such as the following:

Select ?mixer ?mixerId ?mixerName ?mixerStatus
where
{
 ?mixer rdf:type oas:Mixer.
 ?mixer oas:MonitoredMixerStatusInformation ?mixerInfo.
 ?mixerInfo oas:m_id ?mixerId.
 ?mixerInfo oas:m_name ?mixerName.
 ?mixerInfo oas:m_status ?mixerStatus.
};

Situation Identifier Implementation

Figure 25 shows the inheritance structure of the ONA specific situation identifier. The

data previously observed by the Situation Monitoring is used to identify the situations

based on the monitored data.

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 31

Confidentiality: Public Distribution

Figure 25: Inheritance structure of the ONA Situation Identifier

5.3.3.2 Rule based reasoning

The rule-based Situation Reasoning works similar to the OAS case, see Section 5.1.3.2.

5.3.3.3 Situation Provision

The Situation Provision is working similar to the OAS case, see Section 5.1.3.3.

D4.4 Full Prototype of Situational Awareness Services

Page 32 Version 1.0 20 December 2018

Confidentiality: Public Distribution

6. SOFTWARE TOOLS USED FOR IMPLEMENTATION

For the implementation of the Full Prototype several different development tools and

IDE
3
 have been used. For the overall development and orchestration of all system

modules and components the Eclipse IDE has been used. The tested and widely

accepted Open Source development environment for Java offers through a modular

system a large plug-in community. Through all these techniques selected for the

implementation of the systems architecture and services can be summed up in one

environment.

The software tools used, together with their version, link and name of the task they are

being used for, are listed in the following Table 2. These have been used to develop and

run the SAFIRE tools and services against the systems concept and hereby specified

functionality. It resembles state-of-the-art tools and software to provide a modular,

extendable and expandable service-oriented approach.

Table 2: Overview of used key software tools Table

Functionality Software Version Link

IDE Eclipse

IntelliJ IDEA

>= 4.4

>=2018.1.4

http://www.eclipse.org

https://www.jetbrains.com/idea

Build-Management tool Maven >=3.5.3 https://maven.apache.org

Version Control GITlab

SVN

>= 2.3

Issue Management Jira >= 6.3

Programming Language Java >= 1.8.0_xx http://www.java.com

XML Configuration Wrapper Simple XML >= 2.7 http://simple.sourceforge.net/

Web Application Framework Spring >= 4.1 http://www.springsource.org/

Runtime Environment / Applica-

tion Server

Apache Tomcat >= 8.0 http://tomcat.apache.org/

JPA-based persistence Hibernate >= 4.3 http://hibernate.org/

Database H2 Database 1.3 http://www.h2database.com

RDF / OWL API Jena >= 2.12 http://jena.apache.org

RDF Storage SDB / TDB >= 1.3 / 1.1 http://jena.apache.org

Joseki >= 3.4 http://jena.apache.org

Indexing Apache Lucene >= 5.0 http://lucene.apache.org

Protege >=5.2.0 https://protege.stanford.edu

Data processing and distribution Apache NiFi

Apache Kafka

>=1.6.0

>=1.1.0

https://nifi.apache.org

https://kafka.apache.org

Container virtualization Docker https://www.docker.com

7. CONCLUSIONS

This document presented the work done by SAFIRE in WP4, in particular in T4.3:

Early and Full Prototype of Modelling Correlation between Information Sources,

3
 Integrated Development Environment

http://www.eclipse.org/
https://www.jetbrains.com/idea
https://maven.apache.org/
http://www.java.com/
http://simple.sourceforge.net/
http://www.springsource.org/
http://tomcat.apache.org/
http://hibernate.org/
http://www.h2database.com/
http://jena.apache.org/
http://jena.apache.org/
http://jena.apache.org/
http://lucene.apache.org/
https://protege.stanford.edu/
https://nifi.apache.org/
https://kafka.apache.org/
https://www.docker.com/

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 33

Confidentiality: Public Distribution

Products and Situations, specifically it documents the work on Full Prototype

implementation.

Following the requirements and specification for SAFIRE Full Prototype defined in

accordance with SAFIRE Concept and Business Case requirements and analysis and the

following requirements definition, as well as the data model, external interfaces and

functional and technical specifications, the Full Prototype was developed. This

document serves as brief description of this Full Prototype implementation given that

the result of this task is actually the developed Software.

D4.4 Full Prototype of Situational Awareness Services

Page 34 Version 1.0 20 December 2018

Confidentiality: Public Distribution

8. APPENDIX

8.1 BUSINESS CASE SPECIFIC SITUATION MODELS

8.1.1.1 Electrolux

The Situation Model for the Electrolux extends the Generic SAFIRE Situation Model in

the following concepts under the concept “Information”:

Entity Description

AirFlow It describes the presence or absence of air flowing in the hob

coil.

Alarm A possible alarm raised during the cooking process.

BoilingDetectionTime The predicted from PA water boiling point.

Event Information that describes the execution of some happening

which could raise an alarm.

HobTemperature The temperature of the hob in the cooker.

PotType The id of the type of pot currently in use.

PowerProfile The id of the energy schema used in the cooking process.

ShakerUsed An indicator that shows whether the user mixes the pot

ingredients during the cooking process.

Timestamp The time of the current data measurement.

WaterAmount The amount of water (or food) currently contained in the pot.

WaterTemperature Current temperature of the water (or food) in the pot.

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 35

Confidentiality: Public Distribution

Figure 26: ELECTROLUX specific SAFIRE Situation Model (excerpt)

D4.4 Full Prototype of Situational Awareness Services

Page 36 Version 1.0 20 December 2018

Confidentiality: Public Distribution

8.1.1.2 OAS

The Situation Model for OAS extends the Generic SAFIRE Situation Model in the

following concepts:

Entity Description

Alarm A possible alarm raised during a monitored process.

Event Information that describes the execution of some happening

which could raise an alarm.

Alarm Priority Defines the priority of an alarm (e.g. INFO, WARN,

ERROR).

Batch Identifies a production batch.

Product Identifies a product, that can be produce on a production

line.

Production Line

Name

Name of a production line of the factory.

Product Name Name of the product that can be produced on a production

line.

Recipe Recipe of the product that can be produced on a production

line.

Source Silo Identifies a silo from which a source material will be taken.

Target Silo Identifies a silo to which a finished product will be pumped.

Order Identifies a production order coming from the ERP system.

Production Schedule

Paint Identifies the type of paint to be produced

Silo Identifies a silo. A silo can be used as source for materials or

as destination for finished products.

Mixer Identifies a mixer, that is used for mixing the paint.

Pipeline Identifies a pipeline. A pipeline can be used for source

materials or finished products.

Scale Identifies the scales, that are used within the production

process.

Conveyor Identifies a conveyor, that is used in the production process

to transport dry raw materials.

Pump Identifies a pump within the production process.

Valve Identifies a valve within the production process.

Pressure Sensor Identifies a pressure sensor within the production process

(e.g. pressure in the pipelines).

Speed Sensor Identifies a speed sensor within the production process (e.g.

turn speed of a mixer).

Temperature Sensor Identifies a temperature sensor within the production process

(e.g. temperature of paint during mixing process).

Time Sensor Identifies a time sensor within the production process (e.g.

execution time of a mixing process).

ERP The Enterprise Resource Planning system used in the factory

– SAP in this use case.

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 37

Confidentiality: Public Distribution

MES (proNTo) The MES used in the factory – proNTo in this use case.

Figure 27: OAS specific SAFIRE Situation Model (excerpt)

D4.4 Full Prototype of Situational Awareness Services

Page 38 Version 1.0 20 December 2018

Confidentiality: Public Distribution

8.1.1.3 ONA

The Situation Model for ONA extends the Generic SAFIRE Situation Model in the

following concepts:

Entity Description

AccuracyDeviation Difference from the real value of precision in the cutting edge.

ActiveMachine The id of the current monitored machine.

Alarm A possible alarm raised during the EDM process.

Availability It describes the status of availability of the monitored

machine.

DueTime Deadline for the completion of a specific process.

Event Information that describes the execution of some happening

which could raise an alarm.

GeneratorPositionX The x coordination of the cutting edge.

GeneratorPositionY The y coordination of the cutting edge.

RecastLayerThickness Thickness of the part which will need to be cut.

TotalEnergy The total amount of energy currently used.

WireCost Given current cost for the order of new wire of the current

used type.

WireDiameter The diameter of the wired used in the cutting edge.

WireType The type of wired used in the cutting edge.

 D4.4 Full Prototype of Situational Awareness Services

20 December 2018 Version 1.0 Page 39

Confidentiality: Public Distribution

Figure 28: ONA specific SAFIRE Situation Model (excerpt)

