Cloud-based Situational Analysis for Factories
providing Real-time Reconfiguration Services

Project Number 723634

D4.4 Full Prototype of
Situational Awareness Services

Version 1.0
20 December 2018
Final

Public Distribution

ATB

Project Partners: ATB, Electrolux, IKERLAN, OAS, ONA, The Open Group, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
SAFIRE Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the SAFIRE Project Partners.

D4.4 Full Prototype of Situational Awareness Services

2\
-
=

PROJECT PARTNER CONTACT INFORMATION

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Electrolux Italia

Claudio Cenedese

Corso Lino Zanussi 30

33080 Porcia

Italy

Tel: +39 0434 394907

E-mail: claudio.cenedese@electrolux.it

IKERLAN

Trujillo Salvador

P Jose Maria Arizmendiarrieta
20500 Mondragon

Spain

Tel: +34 943 712 400

E-mail: strujillo@ikerlan.es

OAS

Karl Krone

Caroline Herschel Strasse 1
28359 Bremen

Germany

Tel: +49 421 2206 0
E-mail: kkrone@oas.de

ONA Electroerosion
Jose M. Ramos
Eguzkitza, 1. Apdo 64
48200 Durango

Spain

Tel: +34 94 620 08 00
jramos@onaedm.com

The Open Group

Scott Hansen

Rond Point Schuman 6, 5™ Floor
1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of York

Leandro Soares Indrusiak

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325 570

E-mail: leandro.indrusiak@york.ac.uk

Page ii

Version 1.0

Confidentiality: Public Distribution

20 December 2018

SNrIRE D4.4 Full Prototype of Situational Awareness Services

DOCUMENT CONTROL
Version Status Date
0.1 Template creation 2 November 2018
0.2 First Content 13 November 2018
0.3 Additional Content 16 November 2018
0.4 Add OAS specifics 22 November 2018
0.5 Add ONA specifics 30 November 2018
0.6 Update document structure 5 December 2018
0.7 Add Electrolux specifics 11 December 2018
0.8 Internal Review 14 December 2018
1.0 Final Version 20 December 2018
20 December 2018 Version 1.0 Page iii

Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services SNCIRE
TABLE OF CONTENTS
I [04 oo [1 o o o [OOSR 1
I O 1YY OSSP OURTRPR 1
I A o o] £ Tod 1Y o] o 1T SRS 1
1.3 Progress DEYONA DA4.3ottt bbb bbbt b bRk h R R R e h bbbt bt e 2
1.4 DOCUMENT SEIUCTUIE.....cutiiteeitie ittt ettt sttt ettt s et e bt e s bt e sbe e bt e ab e e ae e eh e e eb £ e bt e ke e be e s b e ehe e e be e ebe e bt enbeenbeenbenbeenbeenneas 2
2. SITUATION AWAIENESS SEIVICES .. .e.vetiitiieriitesietestesterestestesesteseesestestesesbe st eseabestesesbe s e eseabe st ebeabe e eseebe st eseabe st eneabe b eresbeneeneeee 3
2.1 Data Ingestion to Situation Determination SEIVICESccciviiiieieeieeieie s se e sre s e e e e sre e e e e sresresresrenneens 4
V- To gL, a T (o] o T USSR 4
2.3 SitUBTION DEEIMINALIONveiiiiiieieeite ettt et bt bbbt et e e e b e b sb e bt et e s b e e et e nbesb e e b e bt ebe e e enee s 5
Y D= o 1Y/ o T L= OSSPSR 5
2.5 Implementation of the REPOSITONYcviiiiiiiiei bbbttt 6
2.6 Implemented FUNCLIONAIITIEScvoiiiiiiieic bbb bbbttt e 6
3. Integration With OtNEr IMOTUIESc.ei it e e s e sae e sbeesbeenbeeneeerbesteesraennes 7
3L IMIBLIICS APttt bbbttt h bbb R £ e R b e b e R e AR R £k £ R e AR e bR e b e Rt R e e Rt e b e e bbb b e ne e 8
3.2 Integration With OptimiSation ENQGINEccooiriiiiiiiiiiieee ettt b e s 9
3.3 Integration With PrediCtive ANAIYLICScoviiiiiiii bbb 9
4. Installation, Configuration @Nd USAQE.cciuiiiiiiiiie ittt e e e e s e e e e te e esnaesra e ta e te e teaneesnnesreesaeenas 9
o R [151 = 1] = U o TSSOSO TSP O SO U TP PRPO 9
41,1 Standalone INSTAITATIONc.viiiie e bbb e bt bbbt eb e nnes 9
4.1.2 Docker container dePlOYMENTccouiiieiieiie et s et e b e e st e s te e te e teeaesneeaneesneesteeneas 10
4.2 CONFIGUIALION ...ttt bbbt b b bbb bbb bbbt bt b e bt e bbbt eb bbbt n b s 10
4.2.1 Services CONFIGUIALION.......couiiiiiiiite ittt ettt bbbt b e s bttt b ettt sb et et e sre et 10
4.2.2 MOonitoring CONFIGUIALIONc..oiiiiiiiiiie ettt sttt nbe s 11
5. BuSiNess Case SPECITIC CUSTOMISATIONc..oiuiiiiiiiii e b bbbt eesb bbb e ne e 12
TR @ 7N TSRS 12
LT I R B T 1 7 1o 1) o o SRS 12
5.1.2 SItUALION IMONITOTING ...ttt et b ettt bbb bbb bbb bbbt et be bbb st 14
TR I B 1 (WL oL) T g .1 LA o] R 17
LT [T 1 (]SSP 20
B.2. 1 DatA INGESTION ...ttt e b et bt bbb bbbt b bbbt b ettt r et 20
5.2.2 SItUALION IMONITOTING ...ttt bbbt b e et bbb bbbt bbb b e st et b et b et 21
I B 111U oLl) T g .1 T LA o] TSR 23
LT T OSSR OSRR 25
TR R DT 17 [0 T=L] o o OO ST UR USRI 25
5.3.2 SHUBLTION IMONITOTING ...ttt bbbt e b s bt bt bt e bt et et e b sbesbeebeebeeneenee e 27
5.3.3 Situation DELErMINAIIONc.eoteitiitiie ittt ettt e e bbb et e st et et e besbesbeebeereens 30
6. Software tools used fOr IMPIEMENTATIONcciiiiii e 32
7 O] e [T (o g 1TSS 32
ST Y o] o 1=1 s [0 [OO SOSSU PR UR PR URRRRIN 34
8.1 Business Case SPecifiCc SItUAtION MOEISc..oouiiiiiiiieee e et 34
Page iv Version 1.0 20 December 2018

Confidentiality: Public Distribution

-
o

D4.4 Full Prototype of Situational Awareness Services

EXECUTIVE SUMMARY

This document provides the full prototype of situational awareness services and the
situation model composed in the situation determination module as part of the
SAFRIRE solution. This module processes data coming from connected systems /
devices / products (data producers) to extract the current situation of these connected
systems / devices / products. The document briefly describes the implemented services
and functionalities of the FP of situational awareness services. Further, an overview
about the additional functionalities compared to the EP is given. The next section gives
guidelines on how to install and configure these services is described.

A description of the business case specific customisations for the SAFIRE industrial use
cases is given in Section 5. Finally, the deliverable gives an overview about the
software tools and frameworks used for implementation is presented.

20 December 2018 Version 1.0 Page v
Confidentiality: Public Distribution

-
o

D4.4 Full Prototype of Situational Awareness Services

1. INTRODUCTION

1.1 OVERVIEW

The Situation Determination services were implemented based on:

the first results from Business Cases Requirements and Analysis (WP1),
the results from the SAFIRE Concept (WP1),

the specification of Situational Awareness Services (WP4) and

the methodology for Situational Awareness (WP4).

1.2 APPROACH APPLIED

For each of the main technologies in SAFIRE the same approach is followed and that is
to start by analysing the requirements collected at Business Case requirements and
analysis phase, detailing these and from there derive the data model, functional
specification, external interfaces, and technical specification.

The general approach followed to write the current document can be seen in Figure 1.

Business

o Expertise Existing
VHERE Solutions
Application Scenario
Requirement
AI;:TY_AISI-S Early Specification
(P1.1) SAFIRE of Situational
EONEETE Awareness Services
Business Cases (D1.4) (D4.2)
Infrastructure
Specification
(D1.3)
Early Prototype
of Situational
Awareness Services
(D4.3)
Final Specifications Full Prototype
of Situational of Situational
Awareness Services Awareness Services
(D4.5) (D4.4)

Figure 1: Approach followed for Full Prototype of Situational Awareness Services

20 December 2018

Version 1.0 Page 1
Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services &

Hog
IRE

1.3

1.4

PROGRESS BEYOND D4.3

The progress beyond the early prototype (D4.3), documented in this deliverable, is
introduced in the following.

Situational Model - the situation models were reviewed to model more
accurately the environment of operation of the SAFIRE solution so that it allows
for situational awareness. The BC specific extensions of the Situation Model have
been extended to included concepts required for the Factory Description
Language (FDL) (see WP3).

Situation Monitoring — The full implementation of the monitoring services was
realised according to the requirements and the final specification.

Situation Determination services — are implemented and intgegrated according
to the requirements and specification.

Integration of Security — the full prototype specification integrates the SAFIRE
Security, Privacy and Trust (SPT) framework into the situation monitoring and
situation determination services.

Integration of the Optimisation Engine and Predictive Analytics Module —
the full prototype refines integration and the communication between the
Situational Awareness Services and the Optimisation Engine according to a
Metrics API defined by the Optimisation Engine. The integration with the
Predictive Analytics is also realised using Kafka as communication channel to
send Predictive Analytics results to Situational Awareness Services via defined
Kafka topic strings.

DOCUMENT STRUCTURE
The document consists of:

Section 1. Introduction, which describes the purpose of this document, and
provides a brief overview of the contents of the document.

Section 2. Description of the Full Prototype (FP) implementation of the Situation
Determination Services including the Situation Model.

Section 3. Overview about the integration with other modules.

Section 4. Brief description on how to install and configure the Situation
Determination Services.

Section 5. Describes the specific customisation for the SAFIRE business cases.
Section 6. Presents the Software tools used for implementation
Section 7. Conclusions and wrap up of the deliverable

Page 2

Version 1.0 20 December 2018
Confidentiality: Public Distribution

\
-
/

o)
=|
=
™

D4.4 Full Prototype of Situational Awareness Services

no

SITUATION AWARENESS SERVICES

The Situation Determination allows for identifying changes in the situations of the
environment. The current identified situation is used to support the optimisation /
reconfiguration.

Situational Awareness Architecture

Opt|m|sat|on Situation Situation
Englne Provision Determination

L Data Ingestion J

Figure 2: Conceptual Situational Awareness Architecture

The Situation Determination uses monitored “raw data” provided by the SAFIRE data
ingestion NiFi templates, which get data directly from the legacy systems, or the
predictive analytics for the product and processes, as well as knowledge available in
different systems, to derive the product/machine/process current situation. Using the
situation model the monitored data are being evaluated and the situation determined.

The workflow of the Situation Determination Services from data acquisition to the
publication of the situation to the other modules, is presented in the following figure.

Electrolux ~ ONA OAS
Appliance Cloud ProNTo

T

Data Ingestion
Services

nifié §€kunm

y

Predictive
Analytics Engine —

Fkofka

(Monitor data from (Identify current situation
ingestion services and based on situation model _
create monitoring and add it to the situation =

repositol) reposito .5 | g
\L - - po v SAFIRE

Situation available
== to SAFIRE modules

T T $kafka
[Refine identified Send identified
situations by situation to the
reasoning predefined kafka
ter.hnlques toplcs

Figure 3: Situation Determination Workflow

Situation Determination Services

As shown in the picture above, the Situation Determination Services receive the factory
or product data through the data ingestion services using NiFi and Kafka. The Situation
Monitoring part receives and structures the data accordingly, and forwards them in the
appropriate format to the Determination part for situation identification. Using
reasoning techniques, the Determination part refines the situation identification and

20 December 2018 Version 1.0 Page 3
Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services

2\
-
=

2.1

2.2

publishes the result to the Kafka messaging system, where it becomes available to the
other modules of the SAFIRE solution.

In more detail, the Situation Determination Services workflow is being described in the
following sections.

DATA INGESTION TO SITUATION DETERMINATION SERVICES

Apache NiFi is used as a part of data injection to the SAFIRE modules. The NiFi
processors support reading data from different data sources and can be configured to
read the data periodically or to read only the new data. With this configurations NiFi
can be adjusted to have the optimal reading pattern for each type of data.

As Business Case (BC)-specific configuration (explained in detail in chapter 5), in the
case of OAS, NiFi is used to read the contents of the Orders table in the database only
once, and the contents of the Mixer Status table periodically to have all the relevant
information. In the case of Electrolux, the Microsoft Excel files serve as data source.
NiFi processors are used to read the contents of a given folder and to extract the data
spreadsheets from the Excel columns. This happens only once to avoid duplicate and
irrelevant data, and is updated with the new files as long as those are saved in the given
repository. In the ONA case, NiFi is used for the combination of database reading and
ONA-cloud API-connection. To prevent duplicates, only the new data are being read.

These examples show that the relevant data are being read from different sources and
the reading schemas must be configured differently according to the use case. The read
data also must be formatted and sent to respective Kafka topics. NiFi offers good
configuration possibilities to ensure the needed reading and transformation.

SITUATION MONITORING

The Situation Monitoring part of the services is responsible for feeding the module with
the SAFIRE data, by using a Kafka for communication. To create a general solution for
the communication with Kafka, the Kafka Monitor class was created in the Situation
Monitoring part. The monitors (one monitor for each monitored case) continuously
check the relevant topics for the new data provided by the data ingestion module(s). The
implementation of the Monitor class is generic and can be used for any business case,
because it implements the key behaviour of a Kafka consumer: reading from the given
topics periodically. If new data are available, the monitored data are being transformed
into a data format that is usable by Situation Determination and send to the Situation
Determination service.

Docker configuration

Page 4

Version 1.0 20 December 2018
Confidentiality: Public Distribution

-
o

D4.4 Full Prototype of Situational Awareness Services

2.3

2.4

The Situation monitoring module is set up to be deployed in a Docker container and run
the corresponding jar executable. Therefore a docker-maven-plugin was used’, allowing
an implicit configuration of the Docker container out of the maven environment. At the
moment the Situation monitoring container is set up to run on ATB’s Docker host
machine, to be reached under http://192.168.15.17:2376.

SITUATION DETERMINATION

The Situation Determination Service continuously listens for monitored data provided
by the Situation Monitoring service. If new monitoring data are available, Situation
Determination tries to identify the current situation based on the monitored data, the
situation model and previously stored identified situations. The current identified
situation is stored in the Situation Repository. Furthermore, the current identified
situation is posted as a kafka topic into the SAFIRE kafka cluster.

Docker configuration

The Situation determination module is set up to be deployed in a Docker container and
run the corresponding jar executable. At the moment the Situation determination

container is set up to run on ATB’s Docker host machine, to be reached under
http://192.168.15.17:2376.

SITUATION MODEL

The SAFIRE situation model is modelled in OWL, which is an open standard ontology
modelling language. This allows the use of tools such as Protégé to develop and manage
the ontology, as well as query and manipulate it through RDF compatible methods and
tools such as Jena, SPARQL, etc.

The situation model for the full prototype supports the core concepts of Activity, Actor,
Information, Product, Production Process and Resource. For the specific purpose of the
three business cases, mainly the concept Information is extended to include BC-specific
concepts that describe the selected data for the SAFIRE integrated operation of all
modules. The BC-specific situation models can be found in the appendix. Enterprises
can extend the generic or the BC-specific SAFIRE situation models to better suit their
domain, by defining sub-classes for the core concepts (see Section 8 Appendix).

A primary definition of the SAFIRE situation model and more details on its
development, is given in D4.2, and the details of the final version have been described
in D4.5.

! https://github.com/fabric8io/docker-maven-plugin

20 December 2018 Version 1.0 Page 5

Confidentiality: Public Distribution

http://192.168.15.17:2376/
http://192.168.15.17:2376/

D4.4 Full Prototype of Situational Awareness Services

T RS
[

2.5 IMPLEMENTATION OF THE REPOSITORY
The Situation Repository is implemented in a layered style. In the vey back end, a
relational database (e.g. MySQL) is used to provide the storage. Above the relational
database, SDB? is used to realize RDF storage and query. Other modules of Situation
Determination Services manipulate and query the repository through a manipulation
layer, which uses Jena APl and SPRQL to communicate with SDB. The API provided
by the Situation Manipulation Layer is on a higher level than one which simply adds
and removes RDF statements from the Jena model, such as: create a new situation
instance, delete orphaned information, and update situation resources and so on. This
makes it easier to manipulate situational information inside the repository. Besides, it
also makes sure the Repository is consistent, as all performed operations are controlled
by the manipulation layer.
2.6 IMPLEMENTED FUNCTIONALITIES
All specified functionality for the Full Prototype of the Situational Awareness Module
has been implemented. Some of the already implemented functionality need to be
refined within the development of the Full Prototype. An overview of the functionality,
implemented is listed in the following table.
Table 1: Overview of implemented functionality
No. Requirement Overall Status
Priority
us4 Able to change existing or adding new SHALL Implemented.
monitoring sources with min. effort
u55 Able to support collection of environmental SHALL Implemented.
data to identify situations
uU5s6 Able to support collection of operator’s SHALL Partially Implemented
behaviours to identify current situation
us7 Able to monitor machine current status datato | SHALL Implemented.
identify situation
uUs8 Able to monitor machine health status to SHALL Implemented.
identify current situation
u59 Able to monitor overall equipment SHALL Implemented.
effectiveness (OEE) to identify current situation
u60 Able to monitor production status to identify SHALL Implemented.
current situation
u6l Able to support collection of data from proNTo | SHALL Implemented.
behaviours to identify current situation Situation can be identified for selected
behaviours, such as Mixer availability and
production orders.
2 http://openjena.org/SDB/
Page 6 Version 1.0 20 December 2018

Confidentiality: Public Distribution

-
o

D4.4 Full Prototype of Situational Awareness Services

u62 Able to monitor Hob Temperature status to SHALL Partially Implemented. Currently supports
identify current situation Electrolux lab environment.
u63 Able to monitor Pot Boiling status to identify SHALL Partially Implemented. Currently supports
current situation Electrolux lab environment.
U64 | Able to provide situational information based SHALL Implemented.
on raw and monitored data
u65 Able to extract situational information from SHALL Implemented.
monitored machines
u66 Able to dynamically extract situational SHALL Implemented.
information from sensor data
ue7 Able to change existing or add new situations SHALL Implemented.
with minimal effort
u68 Able to model situations under which a set of SHALL Implemented
machines is operating
ue69 Able to model situations under which a SHALL Implemented
production process is operating
u70 Able to extract situational information from SHOULD Implemented
sets of related machines
u71 Able to extract situational information from SHOULD Partially implemented. Currently supports
operator actions OAS lab environment.
ur72 Able to evaluate situation with respect to SHALL Not implemented yet
capacity, performance, availability (OEE) of
monitored machines
u73 Able to evaluate situation with respect to SHALL Not implemented yet
capacity, performance, availability (OEE) from
sets of related machines
u74 Able to anticipate alarms before they occur SHALL Partially implemented. Currently
based on current situation implemented in OAS lab environment.
u75 Able to evaluate status of machine job queues SHOULD Implemented.
(if available)
u76 Able to model situation under which proNTo is | SHOULD Implemented using Protégé as modelling
operating tool
U77 | Able to extract situational information from SHALL Implemented for proNTo
proNTo and from other systems
3. INTEGRATION WITH OTHER MODULES

The Full Prototype of the Situational Awareness services are integrated with the

following modules:

20 December 2018

Version 1.0

Page 7

Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services &

Hog
IRE

3.1

= Data-Ingestion: The data ingestion modules are kafka producers, that periodically
post information observed from the systems of industrial partners into the
SAFIRE kafka cluster. The following data ingestion modules are available:

— OAS proNTo: The data ingestion module in the OAS case connects to the
Oracle database server of the proNTo system (simulated factory) and ingests
the data required by SAFIRE modules into the kafka cluster.

— ONA Cloud: The data ingestion module in the ONA case connects to the
Oracle database server of the ONA cloud (real machines) and ingests the
data required by SAFIRE modules into the kafka cluster

— Electrolux: The data ingestion module in the Electrolux case connects to the
data provided by the experimental cooker setup. Results are read from
Matlab/CSV files and ingests the data required by SAFIRE modules into the
kafka cluster.

= Metrics API: The main interface for transferring monitored and situational data
between the SD services and the optimisation engine, allowing to build a valid
optimisation configuration which can be parsed by the Optimisation Engine;
described in chapter 3.1.

= Optimisation Engine: The SD services send an optimisation configuration
containing the monitored/situational data via Kafka to the Optimisation Engine
which produces an optimisation result. This result will be fed back to the SD
services via Kafka.

= Predictive Analytics: The SD services receive predictive analytics results from
Kafka and enrich it with recent situational data.

METRICS API

This section describes the Metrics API as Interface between the SD services and the
Optimisation Engine. The aim of this module is to provide a common interface for
sending monitored and situational data from each BC to the Optimisation Engine. The
following section will briefly show the use of the Metrics API taking the OAS BC as an
example.

Every time the SD service sends monitoring or situational data to the OE a Metrics API
configuration will be constructed. Such a configuration consists of different parameters,
such as the Controlled Metrics, the Key Objective Metrics and the Observable Metrics.
Since the monitored and situational data coming from the legacy systems can be
identified as the observable set of data, The Observable Metrics will contain exactly
these observations. In the OAS BC the observations are the amount of paint to be
produced (resp. amount of paint which already has been produced) and the status of a
mixer. Additionally the Observable Metrics contains the recipe information, i.e. a
mapping of each type of paint to be produced to the mixers, where this specific type of
paint can be produced.

Page 8

Version 1.0 20 December 2018
Confidentiality: Public Distribution

-
o

D4.4 Full Prototype of Situational Awareness Services

The Key Objective Metrics refers to the Key Objective function of the OE. It contains
the optimisation objective, i.e. in the OAS BC the minimisation of the surplus and
makespan for each produced paint.

The Controlled Metrics defines the parameter which can be controlled in order to
achieve the optimisation objective, i.e. the assignment of mixers to the type of paint to
be produced at a specific time.

3.2 INTEGRATION WITH OPTIMISATION ENGINE
The integration between the SD services and the Optimisation Engine is being realised
by sending a valid optimisation configuration built accordingly to the Metrics API to a
specific Kafka topic.

3.3 INTEGRATION WITH PREDICTIVE ANALYTICS
The integration between the SD services and the Predictive Analytics module is being
realised by receiving predictive analytics results in JSON format from a specific Kafka
topic, which will then be processed with recent situational data and send back into
Kafka for further usage.

4, INSTALLATION, CONFIGURATION AND USAGE

This section describes the installation, configuration and usage of the Full Prototype of
the Situational Awareness module. The business case specific customisation is
described in Section 5.

4.1 INSTALLATION
The Full Prototype requires Java and Apache Kafka as prerequisites. The installation of
Apache Kafka is described in D2.3 Early Prototype of Predictive Analytics Platform
and therefore not repeated in this deliverable. The Full Prototype can also be deployed
as Docker container.
The next sections describe the installation and configuration of both Situational
Awareness services.

4.1.1 Standalone installation
The Situation Monitoring and Situation Determination services can be downloaded
from https://www.ath-bremen.de/artifactory/ext-releases-local/eu/safire-project/
20 December 2018 Version 1.0 Page 9

Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services &

Hog
IRE

The Situational Awareness service are available in customised versions for the three
SAFIRE business cases, hence the naming of the executables is accordingly. After
downloading the jar files for monitoring and determination, the services can be started
with the following commands:

java -jar situation-monitoring-xxx-1.0.0.jar
java -jar situation-determination-xxx-1.0.0.jar

b 1Y

where “xxx” has to be replaced by either “oas”, “electrolux” or “ona”.

4.1.2 Docker container deployment
The docker containers for Situation Monitoring and Situation Determination can be
downloaded from http://qitlab.atb-bremen.de by using the following commands:
docker pull gitlab.atb-bremen.de:5555/safire/context-monitoring
docker pull gitlab.atb-bremen.de:5555/safire/context-dtermination
After downloading the container image, it can be started with:
docker start situation-monitoring
docker start situation-determination
In the docker registry two business case specific container images are available, which
can be used for the OAS and ONA use case.
4.2 CONFIGURATION
The Situation Monitoring service and the Situation Determination service need to be
executed prior to its execution. The following two subsections describe the
configuration of the services as well as the configuration of the business case specific
Situation Monitoring customisations.
4.2.1 Services Configuration
The Situation Monitoring as well as the Situation Determination service will be
configured through an XML configuration file. An example for such a configuration can
be seen in the following listing:
<?xml version="1.0" encoding="utf-8"?>
<config xmlns="http://www.atb-bremen.de" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<services>
<service id="Monitoring">
<host>localhost</host>
<location>http://localhost:19001</location>
<name>MonitoringService</name>
Page 10 Version 1.0 20 December 2018

Confidentiality: Public Distribution

http://gitlab.atb-bremen.de/

&\
—P
e

D4.4 Full Prototype of Situational Awareness Services

<server>de.atb.context.services.MonitoringService</server>
<proxy>de.atb.context.services.IMonitoringService</proxy>

</service>

<service id="MonitoringRepository">
<host>localhost</host>
<location>http://localhost:19002</location>
<name>MonitoringDataRepositoryService</name>
<server>de.atb.context.services.MonitoringDataRepositoryService</server>
<proxy>de.atb.context.services.IMonitoringDataRepositoryService</proxy>

</service>

<service id="SituationDeterminationService">
<host>localhost</host>
<location>http://localhost:19004</location>
<name>ContextExtractionService</name>
<server>de.atb.context.services.ContextExtractionService</server>
<proxy>de.atb.context.services.IContextExtractionService</proxy>

</service>

<service id="SituationDeterminationRepositoryService">
<host>localhost</host>
<location>http://localhost:19005</location>
<name>ContextRepositoryService</name>
<server>de.atb.context.services.ContextRepositoryService</server>
<proxy>de.atb.context.services.IContextRepositoryService</proxy>

</service>

</services>
</config>

Code 1 — Example of Situation Awareness Service Configuration

4.2.2 Monitoring Configuration

As described in the previous sections, the Situation Monitoring need to be customised
per Business Case to allow gathering of information, that are specific for each
installation. A description on how to customise the Situation Monitoring is presented in
D4.2. The following listing, gives an example on how to configure the Situation
Monitoring service, so that it uses the business case specific extensions:

<?xml version="1.0" encoding="utf-8"?>
<config xmlns="http://www.atb-bremen.de"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.atb-bremen.de monitoring-config.xsd">

<indexes>

<index id="index-ona" location="indexes/ona"></index>

</indexes>
<datasources>

/>

<datasource id="datasource-ona" type="webservice"
monitor="de.atb.context.monitoring.monitors.webservice.WebServiceMonitor"
uri=" https://onaedm.savvyds.com/ic/"
options="username&password"

class="de.atb.context.monitoring.config.models.datasources.WebServiceDataSource"

</datasources>
<interpreters>

<interpreter id="interpreter-ona">
<configuration type="*"
parser="de.atb.context.monitoring.parser.onacloud.ONACloudParser"

analyser="de.atb.context.monitoring.analyser.onacloud.ONACloudAnalyser" />

</interpreter>

20 December 2018

Version 1.0 Page 11

Confidentiality: Public Distribution

2\
-
=

D4.4 Full Prototype of Situational Awareness Services

</interpreters>
<monitors>
<monitor id="monitor-ona" datasource="datasource-ona"
interpreter="interpreter-ona"
index="index-ona" />

</monitors>
</config>
Code 2 — Example Monitoring Plugin Configuration
5. BUSINESS CASE SPECIFIC CUSTOMISATION
51 OAS

51.1 Data Ingestion

For the data ingestion of the OAS case a specific NiFi template with the necessary
processors has been developed (see Figure 4). The goal of the OAS NiFi template is to
gather information related to the paint production process, i.e. information about the
current status of mixers, recent orders and (historical) batch data. The goal of the OAS
template is to connect to the ProNTo database and retrieve data for each required
database table. The connection will be established via the Oracle database driver, hence
QueryDatabaseTable processors are being used to build the connection. At the moment
the processors are configured for pulling data each n seconds, where n can be modified
within the QueryDatabaseTable processor (default: 10 seconds). The retrieved data will
then be further processed, converted into readable JSON format and published into
Kafka. See Figure 5 for the Nifi template for gathering the (historical) batch data,
Figure 6 for the template to acquire the current mixer status, and Figure 7 for the current
orders of paint to be produced.
G e

- Same changes (might) be needed in the QuerySAFIRE_DAILY_VIEW, QuerySAFIRE_MIXER_STATUS and QuerySAFIRE_ORDERS.
- The Daily View is the early demo schema and might not need to be started for other goals. For the project only the blocks "Orders" and "Mixer" are needed.

Orders Daily View Mixer Status

o 0 4 0 0 0 0 0 0 3 0 0 0 0 4 0 0 0
Queued Queued 0 (0 bytes) Queued
I) In 0 (0 bytes) — 0 5 In
Read/Write 26,28 KB /26,28 KB 5min Read/Write 0 bytes/ 0 bytes 5 Read/Write 63,09 KB/ 63,09 KB
out 0 0(0bytes) 5min out 0— 0 (0bytes) 5 out 0—0(0 bytes

0 0 0 070 o] 0 o] 070 0 0 o] 0?0

Figure 4: NiFi Template Groups for the OAS Data Ingestion Module

Page 12 Version 1.0 20 December 2018
Confidentiality: Public Distribution

A
»
4

o
=|

D4.4 Full Prototype of Situational Awareness Services

QuerySAFIRE_DAILY_VIEW
QueryDatabaseTable 1.7.1

ConvertAvroToJSON
ConvertAvroToJSON 1.7.1

org.apache.nifi - nifi-standard-nar $ org.apache.nifi - nifi-avro-nar
In 0 (0 bytes) Smin | Name success 3 In 0(0 bytes) 5min
Read/Write 0 bytes / 0 bytes 5 min Queued 0 (0 bytes) , Read/Write 0 bytes / 0 bytes 5 min
Out 0 (0 bytes) 5min Qut 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min Tasks/Time 0/ 00:00:00.000 5 min
Name failure, success
Queued 0 (0 bytes)
PublishKafka_0_11
PublishKafka_0_111.7.1
org.apache.nifi - nifi-kafka-0-11-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes / O bytes 5min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5min
Figure 5: OAS NiFi Template for the Daily View Data
QuerySAFIRE_MIXER_STATUS SplitAvro
QueryDatabaseTable 1.7.1 SplitAvro 1.7.1
org.apache.nifi - nifi-standard-nar org.apache.nifi - nifi-avro-nar
| In 0 (0 bytes) 5min L, Name success In 15 (6,38 KB) 5 min
Read/Write 0 bytes / 6,88 KB 5 min Queued 0 (0 bytes) ‘ Read/Write 6,88 KB /47,68 KB 5min
| Out 15 (6,88 KB) 5 min Out 165 (47,68 KB) 5 min
| Tasks/Time 15/00:00:00.096 5min Tasks/Time 15/ 00:00:00.092 5 min
Name split
Queued 0 (0 bytes)
PublishKafka_0_11 ConvertAvroToJSON
PublishKafka_0_11 1.7.1 ConvertAvroToJSON 1.7.1
org.apache.nifi - nifi-kafka-0-11-nar . org.apache.nifi - nifi-avro-nar
n 165 (8,53 KB) 5 min (Name failure, success e 8 165 (47,68 KB) B
Read/Write 8,53 KB /0 bytes 5 min Queued 0 (0 bytes) .| | Read/Write 47,68 KB/8,53KB 5min
QOut 0 (0 bytes) 5min Out 165 (8,53 KB) 5 min
Tasks/Time 37 /00:00:00.487 5 min Tasks/Time 165/ 00:00:00.435 5 min
Figure 6: OAS NiFi Template for the Mixer Status Data
QuerySAFIRE_ORDERS SplitAvro
QueryDatabaseTable 1.7.1 SplitAvro 1.7.1
org.apache.nifi - nifi-standard-nar org.apache.nifi - nifi-avro-nar
In 0 (0 bytes) Soin __ Name success In 15 (519 KB) 5 min
Read/Write 0 bytes /5,19 KB 5 min Queued 0 (0 bytes) ‘ Read/Write 5,19 KB/ 17,49 KB 5 min
out 15 (5,19 KB) 5 min Out 60 (17,49 KB) 5 min
Tasks/Time 15/ 00:00:00.129 5min Tasks/Time 15 / 00:00:00.089 5 min
Name split
Queued 0 (0 bytes)
PublishKafka_0_11 ConvertAvroToJSON
PublishKafka_0_11 1.7.1 ConvertAvroToJSON 1.7.1
org.apache.nifi - nifi-kafka-0-11-nar org.apache.nifi - nifi-avroe-nar
In 60 (3,6 KB) Smin_ Name failure, success —In 60 (17,49 KB) 5 min
Read/Write 3,6 KB/ 0 bytes 5min Queued 0 (0 bytes) .| Read/Write 17,49KB/3,6 KB 5min
Out 0 (0 bytes) 5 min Out 60 (3,6 KB) 5 min
Tasks/Time 25/ 00:00:00.180 5 min Tasks/Time 60/ 00:00:00.217 5 min
Figure 7: OAS NiFi Template for the Orders Data
20 December 2018 Version 1.0 Page 13

Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services

=
=

5.1.2 Situation Monitoring
5.1.2.1 OAS Monitor
The OAS monitor observes the data in the OAS proNTo system for situational changes.
proNTo acts as a manufacturing execution system (MES) but covers also features of
supervisory control and data acquisition (SCADA) systems and Enterprise-Resource-
Planning (ERP) systems.
The proNTo database stores and manages all kinds of data in the proNTo system (live,
master and historical/protocol data). Examples are:
= Batch protocols - Information about (timestamps; executed process steps;
comparing actual versus target measurements; used production lines, etc.)
= Product Recipes - Information about how to produce specific products (defined
Processes; needed materials; mixing ratio of materials; etc.)
= Status information - Information about the current abilities and status of the
factory (e.g. which product recipe is free/approved to use on which lines)
The Full Prototype of the OAS monitor reads data from an Apache kafka node. The data
ingestion module establishes the direct connection to the proNTo system using NiFi and
sends needed information into the kafka node. The OAS monitor reads the data from the
kafka node. See Figure 8 for an overview.
saL JSON JSON RDF
o NiTI @ skia o EEE » E
& / proNTo data ingestion
f A
(OAS) Legacy Production Systems
Figure 8: Data transfer from the OAS proNTo system to the OAS monitor
The Full Prototype of the OAS monitor has a permanent loop of watching the current
mixers status and the orders to be done for the current day. The following message
snippets show some examples for data monitored by the OAS monitor.
Current mixer status
Kafka topic: ResourceAvailability
Data in kafka:
[
MonitoredMixerStatusInformation{ID='1"', m_name='Mischer 1', m_status='1"'},
MonitoredMixerStatusInformation{ID='3", m_name='Mischer 3', m_status='1"'},
MonitoredMixerStatusInformation{ID='5", m_name='Mischer 5', m_status='1"'},
Page 14 Version 1.0 20 December 2018

Confidentiality: Public Distribution

-
o

D4.4 Full Prototype of Situational Awareness Services

MonitoredMixerStatusInformation{ID="2"
MonitoredMixerStatusInformation{ID="4"
MonitoredMixerStatusInformation{ID='6", m_name="'Mischer 6', m_status="'1"'},
MonitoredMixerStatusInformation{ID='7"', m_name='Mischer 7', m_status="'1"'},
MonitoredMixerStatusInformation{ID='8"', m_name='Mischer 8', m_status='1"'},

]

m_name="'Mischer 2'
m_name='Mischer 4'

, , m_status="'1"},
, , m_status="'1"},
B 3
3 3

Code 3: kafka data for mixer status

Orders
Kafka topic: OrderDataTopic

Data in kafka:

[

MonitoredOrdersInformation{ID="
MonitoredOrdersInformation{ID="
MonitoredOrdersInformation{ID="
MonitoredOrdersInformation{ID="

]

ord_name="Std Weiss', ord_amount='145000'},
ord_name="Weiss Matt', ord_amount='165000"'},
ord_name='Weiss Basis', ord_amount='126000'},
ord_name='W Super Glanz', ord_amount='56000"}

whr NP
. v ow .

Code 4: kafka data for orders

Data model

At the moment, two data classes are used, which hold the information about the
monitored data from the proNTo system matching the mixer status and orders. Figure 9
shows the relationship between the different data classes: The class ProntoDataModel
holds the main proNTo data model, which is being specified in detail within the
Prontolnstance, which on its part holds a relation to the both data classes
MonitoredMixerStatusinformation and MonitoredOrderinformation. The last two
classes contain the sensor information from a proNTo machine.

MonitoredMixerStatusinformation: Currently, the ID, the mixer’s name and its status
is being monitored.

MonitoredOrderInformation: Currently, the Order ID, the name of the order and the
amount for this specific order is being monitored.

20 December 2018 Version 1.0 Page 15

Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services

2\
-
=

<<Java Interface=>
©IMenitoringDataMedel<T,D>

de.atb.context monitoring. models

<<Java Class=>

© getldentifier() String
© setldentifer(String)-void
 getMonitoringDataVersion()-String

© getMonitoredAt() Date

© getDocumentindexid():String

© getDocumentUri():String

© getimplementingClassame():String

© getContextldentifierClassName{):String
© getDataSource()

@ setDataSource(D):void

© getBusinessCase()BusinessCase

og)

© triggersContextChange()-boolean
o initialize() void

©Prontolnstance

& Prontolnstance()

© setComponent(Stiing)void
© getComponent()-String

<<Java Class>>

®ProntoDataModel

 getProntoOrdersList{} List<MonitoredOrdersinformation>

@ setProntoOrdersList(List<MonitaredOrdersinformation=)-void
® addToProntoOrdersList(MonitoredOrdersInformation) void

& ProntoDataModel(}
© addProntolnstance(Prontolnstance)-void

g4 et Jvoid 6 getDataSource() DatabaseDataSource
o getP ist()L o setDataSource(DatabaseDataSource) void
o addToP = st | ©fromR PrantoDataModel
o taString) String & fromRefMods(String)-ProntoDataModel
h © getBusinessCase()BusinessCase
0. & getDocumentindexld():String
o getDocumentUri() String
#prontolixerStatusList sorantoOrdersLis & getlmplementingClassName()-Stiing
- o gethontorsdAt() Dats
- 0 & setlonitoredAt(Date) void
])-String
<<Java Class>> <<Java Class=> © getType()-String
itoredMixer mation itoredOrdersinformation © getP ist()-List<P!
MonitoredMixerStatusinformation() & MonitoredOrdsrsinformation()} e Jvoid
& setld(long)void © getld()long OCRPE TR
: B & toRdModel() Model
@ getld{)long © setid(long & toRdfString():String

© seth]_name(String) void © getOrd_namef{):String
© geth_name():String © setOrd_name(String)void
© geth_status()long © getOrd_amount():long

© seth_statusilong)void © setOrd_amount(long)-void
© toString():String © toString():String

© toString():String
@ triggersCantexiChange():boalean
© getldentifier()-String

@ setldentifier(String).void

&g
© getContextldentifierClassName(}:String
o initialize() void

Figure 9: Data model for monitored mixer status and orders

Monitor Implementation

<<Java Class>>

de.alb.context monitoring.analyser

@IndexingAnalyser<QutputType,InputType>

&FIndexingAnalyser()
G Indexer,Document..

g P
& getDocument{) Document
& analyse(InputType) List<OutputType>

i

<<Java Class>>
@ DatabaseAnalyser<OutputType>
de.ath.context monitoring analyser database

&Datab. I D p ion, Indexer,Document.,

o analyseObject(IDatabase Document) List<OutputType:>
& analyseObjest(iDatabase):List<CutputType>

<<Java Class>>
®ProntoAnalyser
de.atb.context monitaring analyser pronto

S Indexer, Document..

© analyseObject({Database) List<ProntoDataModel>

Figure 10: Inheritance structure of the Analyser used for proNTo

For the monitoring process of the proNTo BC a Database Monitor is being used, as the
sensor data from the proNTo Legacy Systems is being stored within a database. Figure
10 shows the relationship and inheritance between the ProntoAnalyser and the more
generic DatabaseAnalyser. The main task of the ProntoAnalyser is to gather
information about the mixer status and orders from the database. According to the
architecture the data will be fetched from a Kafka Cluster. Therefore, Kafka Consumers
for the different data topics are being instantiated, who are continuously polling data
from the cluster. The data are being transferred into the data model shown in Figure 9
and thereafter stored in the Monitoring Repository.

Page 16

Version 1.0
Confidentiality: Public Distribution

20 December 2018

&\
—P
e

D4.4 Full Prototype of Situational Awareness Services

Detailed Data Flow

Figure 11 shows a detailed overview of the dataflow between the legacy system, NiFi,
Kafka and the situation awareness, optimisation and visualization modules. All data
processing is done via the Kafka cluster. As seen in the figure, the order information
and mixer status are being processed by NiFi and have their corresponding topic within
the Kafka node, which will be monitored subsequently by the Situation Awareness
module. Additionally, historical batch data from the proNTo database will be shown in
a graphical calendar representation by a visualisation module. This module will also
receive the analysed data from the Optimisation Engine with an optimized Batch
scheduling for the monitored orders.

proNTo database {

DAILY_VIEW J [ORDERS J [MIXER_STATUS J

Nifi

P

HistoricalDataTopic J [OrderDataTopic J[MixerDataTopic J

ResourceAvailability
Metrics API

Situational Awareness

Kafka [

Orders

Batch Scheduling
Visualization Optimisation Engine
L

Il

- OptimisationResult
Metrics API

Figure 11: Detailed Data Flow for the OAS scenario
5.1.3 Situation Determination

5.1.3.1 OAS Situation Identification
The OAS specific implementation of the Contextldentifier executes SPARQL queries to
identify data from the monitored Situation Monitoring service. Code 5 below shows an
example of a monitored data item, that is used to identify Situations.

<rdf:Description rdf:about="#MonitoredMixerStatusInformation/275807757">
<oas:m_status rdf:datatype="#long">-1</oas:m_status>
<oas:m_name rdf:datatype="#string">Mischer 5</o0as:m_name>
<oas:id rdf:datatype="#long">5</oas:id>
<rdf:type rdf:resource="#MonitoredMixerStatusInformation”/>
</rdf:Description>
<rdf:Description rdf:about="#MonitoredMixerStatusInformation/416448361">
<oas:m_status rdf:datatype="#long">1</oas:m_status>
<oas:m_name rdf:datatype="#string">Mischer 10</o0as:m_name>
<oas:id rdf:datatype="#long">210</oas:id>
<rdf:type rdf:resource="#MonitoredMixerStatusInformation"/>

20 December 2018 Version 1.0 Page 17
Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services SNCIRE

</rdf:Description>

<rdf:Description rdf:about="#MonitoredMixerStatusInformation/59758731">
<oas:m_status rdf:datatype="#long">1</oas:m_status>
<oas:m_name rdf:datatype="#string">Mischer 10</o0as:m_name>
<oas:id rdf:datatype="#long">210</oas:id>
<rdf:type rdf:resource="#MonitoredMixerStatusInformation"/>

</rdf:Description>

<rdf:Description rdf:nodeID="A1">
<rdf:_5 rdf:resource="#MonitoredMixerStatusInformation/275807757"/>
<rdf:_4 rdf:resource="#MonitoredMixerStatusInformation/567702719"/>
<rdf:_10 rdf:resource="#MonitoredMixerStatusInformation/1718853555"/>
<rdf:_12 rdf:resource="#MonitoredMixerStatusInformation/2077540885"/>
<rdf:_20 rdf:resource="#MonitoredMixerStatusInformation/416448361"/>
<rdf:_8 rdf:resource="#MonitoredMixerStatusInformation/820578646"/>
<rdf:_22 rdf:resource="#MonitoredMixerStatusInformation/35181829"/>
<rdf:_19 rdf:resource="#MonitoredMixerStatusInformation/238720618"/>
<rdf:_3 rdf:resource="#MonitoredMixerStatusInformation/1783590156"/>
<rdf:_14 rdf:resource="#MonitoredMixerStatusInformation/1994882064"/>
<rdf:_18 rdf:resource="#MonitoredMixerStatusInformation/144902456"/>
<rdf:_2 rdf:resource="#MonitoredMixerStatusInformation/244690718"/>
<rdf:_15 rdf:resource="#MonitoredMixerStatusInformation/198293959"/>
<rdf:_9 rdf:resource="#MonitoredMixerStatusInformation/595233104"/>
<rdf:_6 rdf:resource="#MonitoredMixerStatusInformation/859758146"/>
<rdf:_17 rdf:resource="#MonitoredMixerStatusInformation/1172961897"/>
<rdf:_21 rdf:resource="#MonitoredMixerStatusInformation/316859560"/>
<rdf:_7 rdf:resource="#MonitoredMixerStatusInformation/571011620"/>
<rdf:_11 rdf:resource="#MonitoredMixerStatusInformation/59758731"/>
<rdf:_16 rdf:resource="#MonitoredMixerStatusInformation/1447564994"/>
<rdf:type rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Seq"/>
<rdf:_13 rdf:resource="#MonitoredMixerStatusInformation/211018806"/>
<rdf:_1 rdf:resource="#MonitoredMixerStatusInformation/1838911889"/>

</rdf:Description>

Code 5 — Example of Monitoring Data in RDF representation (excerpt)
Page 18 Version 1.0 20 December 2018

Confidentiality: Public Distribution

SNrIRE D4.4 Full Prototype of Situational Awareness Services
Situation Identifier Implementation
The OAS specific implementation of the Situation Determination executes queries, such
as the following:
Select ?mixer ?mixerId ?mixerName ?mixerStatus
where
{
’mixer rdf:type oas:Mixer.
?mixer oas:MonitoredMixerStatusInformation ?mixerInfo.
?mixerInfo oas:m_id ?mixerId.
?mixerInfo oas:m_name ?mixerName.
?mixerInfo oas:m_status ?mixerStatus.
s
Figure 12 shows the inheritance structure of the OAS specific situation identifier. The
data previously observed by the Situation Monitoring is used to identify the situations
based on the monitored data.
1 IMonitoringData
m % fromRdfModel(String) T
fromRdfModel(Model) T
toRdfString() String
toRdfModel() Model
N
1 IContextldentifier
m = identifyContext(Context, MonitoringData) Context
i
c OASSituationldentifier
m identifyContext(ElectroluxContextContainer, ElectroluxDataModel) ElectroluxContextContainer
Figure 12: Inheritance structure of the OAS Situation Identifier used for proNTo
5.1.3.2 Rule based reasoning
The OAS specific rules used in the OAS case for situation reasoning is based on the
Jena Inference Engine:
Reasoner ruleReasoner = new GenericRuleReasoner(Rule.rulesFromURL(ruleURL));
InfModel infM = ModelFactory.createInfModel(ruleReasoner, rawModel);
Thereby, the business case specific rules are stored in the ruleurL. Code 6 — shows an
example, which can be explained as “if a production line has a mixer attached to it, and
this mixer is observed by volume sensor which provides a resource identified as volume
in cm?®, this production line is of type paint production line”.
20 December 2018 Version 1.0 Page 19

Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services

2\
-
=

5.1.33

5.2

521

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix safire: <http://www.safire-factories.org/base.owl#> .
[rulel: (?a safire:hasDevicePart ?b)

(?b rdf:type safire:Mixer)
(?b safire:isObservedBy ?c)
(?c rdf:type safire:VolumeSensor)
(?c safire:providesVolume ?d)
(?d rdf:type safire:CM3)
-> (?a rdf:type safire:PaintProductionLine)

Code 6 — Example Rule for Rule-Based Context Reasoning

Situation Provision

The Full Prototype of Situation Determination module sends the identified situation(s)
to the SAFIRE kafka cluster, so that subsequent services can retrieve the situations and
use them for their tasks (e.g. Optimisation Engine).

ELECTROLUX

Data Ingestion

For the data ingestion of the Electrolux case a specific NiFi template with the necessary
processors has been developed (Figure 13). The goal of the Electrolux template is to
gather information related to cooking processes while using the experimental Electrolux
cooker installation. The data are being produced from the installation and stored in .xIsx
files. The NiFi template reads the data from the new coming files (ListFile processor)
and brings them to a structure ready to convert to the specific data formats (FetchFile
processor), NiFi FlowFiles, which are necessary for the next processors
(ConvertExcelToCSVProcessor, ConvertCSVToAvro, ConvertAvroToJSON) that
promote the data inside the template. The last processor of the template (PublishKafka)
receives the data in the FlowFile and publishes them to Kafka in a predefined topic (e.g.
elux_data_topic). When published to Kafka, the ingested data are available to all
SAFIRE modules to receive for their internal processing.

Page 20

Version 1.0 20 December 2018
Confidentiality: Public Distribution

IRE D4.4 Full Prototype of Situational Awareness Services

5 min Name success In
i Queued 0 (0 bytes) Read/Write 0 byte:
Out 0 (0bytes)

Tasks/Time 0/00:00:00.000

ytes

Name success

" Name success
m 005, Queved 0 (0bytes)
Read/Write Obytes /Obytes : 4

out 0(0 bytes)

Tasks/Time 0/ 00:00:00.000

Name failure
Queued 0 (0 bytes)

Tasks/Time 0/00:00:00.000 Smin Tasks/Time 0/ 00:0000.000

Name failure, incompatible
Queued 0 (0 bytes)

Figure 13: NiFi Template for the Electrolux Data Ingestion Module

5.2.2 Situation Monitoring

5.2.2.1 Electrolux Monitor

The Electrolux monitor observes the data from cookers. An example for information
observed by the Electrolux Monitor is:

= Cooker Status — Information about the status of a cooker. It contains information
about the energy, type of pot, amount of water used.

Csv RDF

Experimental Results
storedin CSVfiles »

Situational Situational
Monitoring Determination

Figure 14: Data transfer to the Electrolux monitor

The Full Prototype of the Electrolux monitor has a permanent loop of watching a folder
in a filesystem for new files, which contain experimental results.

Data model

The class ElecDataModel holds the main data model for the Electrolux business case.
The class MonitoredCookerinformation contains the sensor information from the
Electrolux cookers.

CookerStatusinformation: Currently, the ID, the cookers name, its status, the pot used
and the amount of water is being monitored.

20 December 2018 Version 1.0 Page 21
Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services

2\
-
=

Figure 15: Data model for Cooker status

Monitor Implementation

For the monitoring process of the Electrolux BC a Filesystem Monitor is being used, as
the sensor data from the experimental set-ups is stored in CSV files in a file system.
Figure 23 shows the relationship and inheritance between the ElectroluxCSVAnalyser
and the more generic FileAnalyser. The main task of the ElectroluxCSVAnalyser is to
gather information about the cooker status. The data are being transferred into the data
model shown in Figure 23 and thereafter stored in the Monitoring Repository.

IndexingAnalyser
IndexingAnalyser()
InterpreterC Indexer, Document, AmiMenitoringConfiguration)

analyse(inputType) List<OutputType>

'

&) FileAnalyser ‘

W b Fi DataSource, InterpreterC: Indexer, Document,

m . analyseObjectlFile, Document) List<OutputType>

) % analyseObjectlFile) List<OutputTypes
A

T_‘

m - ElectroluC InterpreterC ion, Indexer, Document, AmiMenitoringConfiguration) ‘
m - analyseQbject(File) List<ONADataMadel> |

© ' ElectroluxCSVAnalyser

Figure 16: Inheritance structure of the Analyser used for Electrolux

Page 22

Version 1.0 20 December 2018
Confidentiality: Public Distribution

&\
—P
e

D4.4 Full Prototype of Situational Awareness Services

5.2.3 Situation Determination

5.2.3.1 Electrolux Situation Identification

The Electrolux specific implementation of the Contextldentifier executes SPARQL
queries to identify data from the monitored Situation Monitoring service. Code 5 below
shows an example of a monitored data item, that is used to identify Situations.

<rdf:Description rdf:about="#ElectroluxMonitoredInformation/705471857">
<elux:cur_f06 rdf:datatype="#double">0.0</elux:cur_fo6>
<elux:time rdf:datatype="#double">0.17587581125236543</elux:time>
<elux:cur_f05 rdf:datatype="#double">0.0</elux:cur_fo5>
<elux:cur_f11 rdf:datatype="#double">0.0</elux:cur_f11>
<elux:t_coil rdf:datatype="#double">0.0</elux:t_coil>
<elux:cur_f10 rdf:datatype="#double">0.0</elux:cur_f10>
<elux:cur_f08 rdf:datatype="#double">0.0</elux:cur_f08>
<elux:cur_f02 rdf:datatype="#double">0.0</elux:cur_f02>
<elux:cur_f07 rdf:datatype="#double">0.0</elux:cur_f07>
<elux:cur_f01 rdf:datatype="#double">0.0</elux:cur_fo1l>
<elux:t_water rdf:datatype="#double">100.16326904296875</elux:t_water>
<elux:cur_f13 rdf:datatype="#double">0.0</elux:cur_f13>
<elux:cur_f12 rdf:datatype="#double">0.0</elux:cur_f12>
<elux:cur_fe4 rdf:datatype="#double">0.0</elux:cur_f04>
<elux:cur_f@9 rdf:datatype="#double">0.0</elux:cur_f09>
<elux:cur_f0@3 rdf:datatype="#double">0.0</elux:cur_f03>
<elux:energy rdf:datatype="#double">1006.7838700061303</elux:energy>
<rdf:type rdf:resource="#ElectroluxMonitoredInformation"/>

</rdf:Description>

<rdf:Description rdf:about="#ElectroluxMonitoredInformation/847308988">
<elux:cur_f05 rdf:datatype="#double">0.0</elux:cur_f05>
<elux:time rdf:datatype="#double">0.19321985970376387</elux:time>
<elux:cur_f10 rdf:datatype="#double">0.0</elux:cur_f10>
<elux:cur_f@9 rdf:datatype="#double">0.0</elux:cur_f09>
<elux:cur_f13 rdf:datatype="#double">0.0</elux:cur_f13>
<elux:cur_fe6 rdf:datatype="#double">0.0</elux:cur_f06>
<elux:t_coil rdf:datatype="#double">0.0</elux:t_coil>
<elux:cur_f12 rdf:datatype="#double">0.0</elux:cur_f12>
<elux:energy rdf:datatype="#double">684.3312550976387</elux:energy>
<elux:cur_f03 rdf:datatype="#double">0.0</elux:cur_f03>
<elux:cur_f01 rdf:datatype="#double">0.0</elux:cur_fo1l>
<rdf:type rdf:resource="#ElectroluxMonitoredInformation"/>
<elux:cur_f07 rdf:datatype="#double">0.0</elux:cur_f07>
<elux:cur_f11 rdf:datatype="#double">0.0</elux:cur_f11>
<elux:cur_fe4 rdf:datatype="#double">0.0</elux:cur_f04>
<elux:cur_f02 rdf:datatype="#double">0.0</elux:cur_f02>
<elux:t_water rdf:datatype="#double">71.4569091796875</elux:t_water>
<elux:cur_f08 rdf:datatype="#double">0.0</elux:cur_fe8>

</rdf:Description>

<rdf:Description rdf:about="#ElectroluxMonitoredInformation/1456717480">
<elux:cur_f03 rdf:datatype="#double">0.0</elux:cur_fe3>
<elux:cur_f01 rdf:datatype="#double">0.0</elux:cur_fo1l>
<elux:t_water rdf:datatype="#double">32.39593505859375</elux:t_water>
<elux:time rdf:datatype="#double">0.03197233499693058</elux:time>
<elux:energy rdf:datatype="#double">113.13161745422406</elux:energy>
<rdf:type rdf:resource="#ElectroluxMonitoredInformation"/>
<elux:cur_f06 rdf:datatype="#double">0.0</elux:cur_f06>
<elux:cur_f13 rdf:datatype="#double">0.0</elux:cur_f13>
<elux:cur_f09 rdf:datatype="#double">0.0</elux:cur_f09>
<elux:cur_f10 rdf:datatype="#double">0.0</elux:cur_f10>
<elux:cur_f05 rdf:datatype="#double">0.0</elux:cur_fo5>

20 December 2018 Version 1.0 Page 23
Confidentiality: Public Distribution

2\
-
=

D4.4 Full Prototype of Situational Awareness Services

<elux:t_coil rdf:datatype="#double">0.0</elux:t_coil>

<elux:cur_f12 rdf:datatype="#double">0.0</elux:cur_f12>
<elux:cur_f08 rdf:datatype="#double">0.0</elux:cur_fe8>
<elux:cur_f04 rdf:datatype="#double">0.0</elux:cur_fe4>
<elux:cur_f02 rdf:datatype="#double">0.0</elux:cur_f02>
<elux:cur_f11 rdf:datatype="#double">0.0</elux:cur_f11>
<elux:cur_f07 rdf:datatype="#double">0.0</elux:cur_f07>

</rdf:Description>

Code 7 — Example of Monitoring Data in RDF representation (excerpt)

The Electrolux specific implementation executes queries, such as the following:

Select ?cookerInfo?time ?tempWater ?tempCoil
where
{
?mixer rdf:type elux:Cooker.
?mixer elux: ElectroluxMonitoredInformation ?cookerInfo.
?mixerInfo elux:time ?time.
’mixerInfo elux:t_water?tempWater.
?mixerInfo elux:t_coil?tempCoil.

1

Situation Identifier Implementation

Figure 17 shows the inheritance structure of the Electrolux specific situation identifier.
The data previously observed by the Situation Monitoring is used to identify the
situations based on the monitored data.

1 IMoniteringData
m fromRdfModel(String) T
fromRdfModel(Model) T

toRdfString() String
toRdfModel() Model
N

1§ IContextldentifier

m = identifyContext(Context, MonitoringData) Context

A

I

|

i
c ElectroluxSituationldentifier

m % identifyContext(ElectroluxContextContainer, ElectroluxDataModel) ElectroluxContextContainer

Figure 17: Inheritance structure of the Electrolux Situation Identifier

5232 Rule based reasoning
The rule-based Situation Reasoning works similar to the OAS case, see Section 5.1.3.2.

Page 24 Version 1.0 20 December 2018
Confidentiality: Public Distribution

-
o

D4.4 Full Prototype of Situational Awareness Services

5.2.3.3 Situation Provision

The Situation Provision is working similar to the OAS case, see Section 5.1.3.3.

5.3 ONA

5.3.1 Data Ingestion

The data ingestion module for the ONA case is composed by two different NiFi
template groups (figure Figure 18), namely the Metadata (figure Figure 19) and the
Stream (figure Figure 20) groups. The goal for the Metadata template is to connect to
the ONA cloud API and retrieve the appropriate configuration data that the Stream

template will need to

know in order to get the data from the ONA machines. The

Metadata template populates a PostgreSQL database with information regarding the
expected data groups (table “groups™), the required data ids (tables “indicator” and
“selectedIndicator”), the available machines for the SAFIRE user (table “machine”) and
their locations (table “location”), and a lookup table that connects machines and data
groups (table “stream”). Using these database records, the Stream template is being
configured so to retrieve and publish to Kafka only the data necessary for the selected

ONA scenario.

Metadata
0 0 0 57 0

Queued 0 (0 bytes)

In 0 (0 bytes) —» 0
Read/Write 0 bytes / 0 bytes
Out 0 — 0 (0 bytes)

0 0 0 070

Figure 18:

There is User and Password in the ONA Readme, but they will not fit:
use your own Postgres User (postgre is standart) and your own set password.

Stream
0] 0 0 0 74 1 0

Queued 209 (22,34 KB)
5min In 0 (0 bytes) — 0 5 min
5 min Read/Write 0 bytes / 0 bytes 5 min
5 min Out 0 — 0 (0 bytes) 5 min

0 0 @0 070

NiFi Template Groups for the ONA Data Ingestion Module

20 December 2018

Version 1.0 Page 25
Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services SAFIRE
|
Figure 19: Metadata Group of the ONA NiFi Template
Page 26 Version 1.0 20 December 2018

Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services

T et g

e ‘

Sowtatiniir st into PoamzeSaL

Moritor s Nty

Figure 20: Stream Group of the ONA NiFi Template

5.3.2 Situation Monitoring

5.3.2.1 ONA Monitor

The ONA monitor observes the data in the ONA cloud platform. The ONA cloud
platform acts as a solution to allow for example machine monitoring, data analysis and
planning of predictive maintenance. Examples are:

= Machine Execution Status — Information about the availability of a machine and

in case it is available, it provides information whether the machine is currently in
production mode or not.

= ONA

: & AV100-12522 JSON JSON RDF
H

L SIS

s .
s 2 » n I @... »% kq‘l:l(am » Sltua_tlor_wal DSt|tua1:!onta_l
lt‘: - Monltorlng etermination
} . ONA data ingestion docker

| g

Figure 21: Data transfer from the ONA cloud to the ONA monitor

The Full Prototype of the ONA monitor has a permanent loop of watching the current

machine execution status. The following message snippets show some examples for
data monitored by the ONA monitor.

20 December 2018 Version 1.0

Page 27
Confidentiality: Public Distribution

2\
-
=

D4.4 Full Prototype of Situational Awareness Services

Current machine execution status

Kafka topic: MachineExecutionStatus

Data in kafka:

[
MachineExecutionStatusInformation{ID="1"', m_name='AV100-12522', m_status='1l",

e status=’0’},

MachineExecutionStatusInformation {ID="'2', m_name='AV25-12149', m_status='1",
e_status="1"},

MachineExecutionStatusInformation {ID='3', m_name='AV25-666', m_status="1",
e_status=’0’},

]

Code 8: kafka data for machine execution status

Data model

Currently, two data classes are used, which hold the information about the monitored
data from the ONA cloud platform matching the machine execution status. Figure 22
shows the relationship between the different data classes: The class
ONACIloudDataModel holds the main ONA cloud data model, which is being specified
in detail within the ONAMachine class, which on its part holds a relation to the data
class MachineExecutionStatusinformation, which in turn contains the sensor
information from ONA machines.

MachineExecutionStatusinformation: Currently, the 1D, the machines’s name and its
execution status is being monitored.

Page 28 Version 1.0 20 December 2018
Confidentiality: Public Distribution

&\
—P
e

D4.4 Full Prototype of Situational Awareness Services

Figure 22: Data model for machine execution status

Monitor Implementation

For the monitoring process of the ONA BC a Webservice Monitor is being used, as the
sensor data from the ONA cloud platform is being accessible via a web service-based
API. Figure 23 shows the relationship and inheritance between the ONACIloudAnalyser
and the more generic WebServiceAnalyser. The main task of the ONACloudAnalyser is
to gather information about the mixer status and orders from the database. According to
the architecture the data will be fetched from a Kafka Cluster. Therefore, Kafka
Consumers for the different data topics are being instantiated, who are continuously
polling data from the cluster. The data are being transferred into the data model shown
in Figure 23 and thereafter stored in the Monitoring Repository.

€ % IndexingAnalyser

IndexingAnalyser()

Dat: ¢, InterpreterC Indexer, Document, AmIMonitoringConfiguration)

analyse(lnputType) List< OutputType>

WebServiceAnalyser
WebServiceAnalyser()
WebServic Dat: . Indexer, Document, AmIMonitoringConfiguration)

P
analyseObject(WebService, Document) List<OutputType>

3§33 m

analyseObject(WebService) List<QutputType>

€ = ONACloudAnalyser
m = ONACIoudAnalyser(DataSource, InterpreterC Indexer, Document, AmiMonitoringConfiguration)

m ‘& analyseObject(/WebService) List<ONADataModel>

Figure 23: Inheritance structure of the Analyser used for ONA cloud platform

Detailed Data Flow

Figure 24 shows a detailed overview of the dataflow between the legacy system, NiFi,
Kafka and the situation awareness modules. All data processing is done via the Kafka
cluster. As seen in the figure, the order information and mixer status are being
processed by NiFi and have their corresponding topic within the Kafka node, which will
be monitored subsequently by the Situation Awareness module.

M [ORDERS J [EXECUTION_STATUS J

Nifi
Ka_fka { HistoricalDataTopic ‘ { OrderDataTopic H MixerDataTopic J
ResourceAvailability
Metrics API

Situational Awareness

Optimisation Engine
L

20 December 2018 Version 1.0 Page 29

Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services

2\
-
=

5.3.3

5331

Figure 24: Detailed Data Flow for the ONA scenario
Situation Determination

ONA Situation Identification

The ONA specific implementation of the Contextldentifier executes SPARQL queries
to identify data from the monitored Situation Monitoring service. Code 5 below shows
an example of a monitored data item, that is used to identify Situations.

<rdf:Description rdf:nodeID="A0">
<rdf:_1 rdf:resource="http://atb-bremen.de/bc-ona/OnaMachine/445895563"/>
<rdf:type rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Seq"/>
</rdf:Description>
<rdf:Description rdf:nodeID="A1">
<rdf:type rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Seq"/>
</rdf:Description>
<rdf:Description rdf:about="http://atb-bremen.de/bc-ona/OnaMachine">
<elux:javaclass>de.atb.context.monitoring.models.ona.OnaMachine</elux:javaclass>
<rdf:type rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Class"/>
</rdf:Description>
<rdf:Description rdf:about="http://atb-bremen.de/bc-ona/OnaMachine/445895563">
<ona:machineExecutionStatusList rdf:nodeID="A1"/>
<ona:component rdf:datatype="#string"></ona:component>
<rdf:type rdf:resource="http://atb-bremen.de/bc-ona/OnaMachine”/>
</rdf:Description>
<rdf:Description rdf:about="http://atb-bremen.de/bc-ona/OnaDataModel">

<elux:javaclass>de.atb.context.monitoring.models.ona.OnaDataModel</elux:javaclass>
<rdf:type rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Class"/>
</rdf:Description>
<rdf:Description rdf:about="http://thewebsemantic.com/javaclass">
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#AnnotationProperty"”/>
</rdf:Description>

Code 9 — Example of Monitoring Data in RDF representation (excerpt)

The ONA specific implementation executes queries, such as the following:

Select ?mixer ?mixerId ?mixerName ?mixerStatus
where
{
’mixer rdf:type oas:Mixer.
?mixer oas:MonitoredMixerStatusInformation ?mixerInfo.
?mixerInfo oas:m_id ?mixerId.
’mixerInfo oas:m_name ?mixerName.
?mixerInfo oas:m_status ?mixerStatus.

1

Situation Identifier Implementation

Figure 25 shows the inheritance structure of the ONA specific situation identifier. The
data previously observed by the Situation Monitoring is used to identify the situations
based on the monitored data.

Page 30

Version 1.0 20 December 2018
Confidentiality: Public Distribution

\
-
/

D4.4 Full Prototype of Situational Awareness Services

L
=|

I IMonitoringData
ml = fromRdfModel(String) T
m fromRdfModel(Model) T

m) = toRdfString() String
m toRdfModel() Model
/}\
|
i
I IContextldentifier
m %= identifyContext(Context, MonitoringData) Context
A

(= ONASituationldentifier
m % identifyContext(ElectroluxContextContainer, ElectroluxDataModel) ElectroluxContextContainer

Figure 25: Inheritance structure of the ONA Situation Identifier

5332 Rule based reasoning
The rule-based Situation Reasoning works similar to the OAS case, see Section 5.1.3.2.

5.3.3.3 Situation Provision
The Situation Provision is working similar to the OAS case, see Section 5.1.3.3.

20 December 2018 Version 1.0 Page 31
Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services

2\
-
=

SOFTWARE TOOLS USED FOR IMPLEMENTATION

For the implementation of the Full Prototype several different development tools and
IDE® have been used. For the overall development and orchestration of all system
modules and components the Eclipse IDE has been used. The tested and widely
accepted Open Source development environment for Java offers through a modular
system a large plug-in community. Through all these techniques selected for the
implementation of the systems architecture and services can be summed up in one

environment.

The software tools used, together with their version, link and name of the task they are
being used for, are listed in the following Table 2. These have been used to develop and
run the SAFIRE tools and services against the systems concept and hereby specified
functionality. It resembles state-of-the-art tools and software to provide a modular,
extendable and expandable service-oriented approach.

Table 2: Overview of used key software tools Table

Functionality Software Version Link
IDE Eclipse >=4.4 http://www.eclipse.org
IntelliJ IDEA >=2018.1.4 https://www.jetbrains.com/idea
Build-Management tool Maven >=3.5.3 https://maven.apache.org
Version Control GITlab >=2.3
SVN
Issue Management Jira >=6.3
Programming Language Java >=1.8.0 xx http://www.java.com
XML Configuration Wrapper Simple XML >=2.7 http://simple.sourceforge.net/
Web Application Framework Spring >=41 http://www.springsource.org/
Runtime Environment / Applica- | Apache Tomcat | >=8.0 http://tomcat.apache.org/
tion Server
JPA-based persistence Hibernate >=4.3 http://hibernate.org/
Database H2 Database 1.3 http://www.h2database.com
RDF / OWL API Jena >=2.12 http://jena.apache.org
RDF Storage SDB/TDB >=13/11 http://jena.apache.org
Joseki >=3.4 http://jena.apache.org
Indexing Apache Lucene | >=5.0 http://lucene.apache.org
Protege >=5.2.0 https://protege.stanford.edu
Data processing and distribution | Apache NiFi >=1.6.0 https://nifi.apache.org
Apache Kafka >=1.1.0 https://kafka.apache.org

Container virtualization

Docker

sz://WWW.docker.com

CONCLUSIONS

This document presented the work done by SAFIRE in WP4, in particular in T4.3:
Early and Full Prototype of Modelling Correlation between Information Sources,

% Integrated Development Environment

Page 32

Version 1.0

Confidentiality: Public Distribution

20 December 2018

http://www.eclipse.org/
https://www.jetbrains.com/idea
https://maven.apache.org/
http://www.java.com/
http://simple.sourceforge.net/
http://www.springsource.org/
http://tomcat.apache.org/
http://hibernate.org/
http://www.h2database.com/
http://jena.apache.org/
http://jena.apache.org/
http://jena.apache.org/
http://lucene.apache.org/
https://protege.stanford.edu/
https://nifi.apache.org/
https://kafka.apache.org/
https://www.docker.com/

-
o

D4.4 Full Prototype of Situational Awareness Services

Products and Situations, specifically it documents the work on Full Prototype
implementation.

Following the requirements and specification for SAFIRE Full Prototype defined in
accordance with SAFIRE Concept and Business Case requirements and analysis and the
following requirements definition, as well as the data model, external interfaces and
functional and technical specifications, the Full Prototype was developed. This
document serves as brief description of this Full Prototype implementation given that
the result of this task is actually the developed Software.

20 December 2018 Version 1.0 Page 33
Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services

8. APPENDIX
8.1 BUSINESS CASE SPECIFIC SITUATION MODELS

8.1.1.1 Electrolux

The Situation Model for the Electrolux extends the Generic SAFIRE Situation Model in
the following concepts under the concept “Information”:

Entity Description

AirFlow It describes the presence or absence of air flowing in the hob
coil.

Alarm A possible alarm raised during the cooking process.

BoilingDetectionTime The predicted from PA water boiling point.

Event Information that describes the execution of some happening
which could raise an alarm.

HobTemperature The temperature of the hob in the cooker.

PotType The id of the type of pot currently in use.

PowerProfile The id of the energy schema used in the cooking process.

ShakerUsed An indicator that shows whether the user mixes the pot
ingredients during the cooking process.

Timestamp The time of the current data measurement.

WaterAmount The amount of water (or food) currently contained in the pot.

WaterTemperature Current temperature of the water (or food) in the pot.

Page 34 Version 1.0 20 December 2018
Confidentiality: Public Distribution

3

m\ 17
»
/

D4.4 Full Prototype of Situational Awareness Services

=\
=

0 Reconfguraton

/

@ BciingDaccto
nTine

/

O EnterpdseResou

O WaterAmouns

[

—
e

@ KoyObjpcmoia
e

‘ ® SensocklDados I-—-(>— .;w“

[V X

@ FacoryOparacor ® FrocessngUnit

® Treaacp | @ TimoSensor

i

$.500vr0 O FromsueSasor

® Acor N, | ® senetcoaics ® Cockingiachine |

|_® owTieg - P :‘\\

® Frocudionfroce 0 Manienance I.Alm l
33

o> A R\
0 CockingFrocess ® WanrTemperans
1 e
1
‘SU';EW

Figure 26: ELECTROLUX specific SAFIRE Situation Model (excerpt)

20 December 2018 Version 1.0 Page 35
Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services

8.1.1.2 OAS

The Situation Model for OAS extends the Generic SAFIRE Situation Model in the

following concepts:

Entity Description

Alarm
Event

Alarm Priority

Batch
Product

Production Line
Name
Product Name

Recipe

Source Silo

Target Silo

Order

Production Schedule
Paint

Silo

Mixer
Pipeline

Scale

Conveyor
Pump

Valve

Pressure Sensor

Speed Sensor

Temperature Sensor

A possible alarm raised during a monitored process.
Information that describes the execution of some happening
which could raise an alarm.

Defines the priority of an alarm (e.g. INFO, WARN,
ERROR).

Identifies a production batch.

Identifies a product, that can be produce on a production
line.

Name of a production line of the factory.

Name of the product that can be produced on a production
line.

Recipe of the product that can be produced on a production
line.

Identifies a silo from which a source material will be taken.
Identifies a silo to which a finished product will be pumped.
Identifies a production order coming from the ERP system.

Identifies the type of paint to be produced

Identifies a silo. A silo can be used as source for materials or
as destination for finished products.

Identifies a mixer, that is used for mixing the paint.

Identifies a pipeline. A pipeline can be used for source
materials or finished products.

Identifies the scales, that are used within the production
process.

Identifies a conveyor, that is used in the production process
to transport dry raw materials.

Identifies a pump within the production process.

Identifies a valve within the production process.

Identifies a pressure sensor within the production process
(e.g. pressure in the pipelines).

Identifies a speed sensor within the production process (e.g.
turn speed of a mixer).

Identifies a temperature sensor within the production process
(e.g. temperature of paint during mixing process).

Time Sensor Identifies a time sensor within the production process (e.g.
execution time of a mixing process).
ERP The Enterprise Resource Planning system used in the factory
— SAP in this use case.
Page 36 Version 1.0 20 December 2018

Confidentiality: Public Distribution

A
-
-

/

on
=

D4.4 Full Prototype of Situational Awareness Services

MES (proNTo) The MES used in the factory — proNTo in this use case.

Sdiecxpe

S —_ s
Il|l >D1|_s_tance8en_s_o__r/
/

// // G

(speedsensar)
/ L . —
({ MetwokDevice) —
>y e
/ Slemioetee) fos” ——
/ - . iga ——SRESUEEERR)
is € i i T T
(Sensorialbevice [- .
/ —— "“————I-/'V — =~
~—isa Qelumes=ap)
| // '\kTemperatuleSensor-:I
Is-a}l’ / — i
/ / n
f /
I." ."Ir is

. LN i
Device Je}—i=2

~zs
—

..,__q:__ .

"\:f_'_ro cessingDevic ?-../\I

-
N\ 2
isa -
—— TN
| Scale |
S~
. \(ipeline /I

e N - T
AN e \Q . sa AV
isa—" T ~\ —

— - —
— ~— ProcessingUnit |
— —, . s —
s S e N . — dxa_ -
et { scapa) — { Pump)
- N . . \ Pume
—lxa — Y __
T ~{ ProNTo |
e ~—
1 ERP |-
VERP — —iza —
1 sap)
/ >] 3
| Product ‘,?_As;a—‘_\ ProductPart |
is—a'/ — s —
/ TN . e
/ | Paint gb——1%3————{ white |
R e
e P
/ [I '\ControlledMetnc.:r/-
/ — T o ~, _— -
|_5__ g rofiﬁf/,’ﬂ (Subp) is-'g,-'/
P = -

= <t i —

t__iga..u-)‘-ﬁl_tuahonMOd_el/é:“'_E@——— . . pr——— "____is—_a_—— - A
— B ion b—i=ai——{Metric =T

P \\ \Iiffrmatf?/ \M etn_c//]é[____&ﬁi_ o

k(Situation) \

"7 KeyObjectiveletric)
- e 1)
A

]
K owl:Thing &

Fighre 27: OAS specific SAFIRE Situation Model (excerpt)

20 December 2018

Version 1.0 Page 37
Confidentiality: Public Distribution

D4.4 Full Prototype of Situational Awareness Services

8.1.1.3 ONA

The Situation Model for ONA extends the Generic SAFIRE Situation Model in the
following concepts:

Entity

AccuracyDeviation
ActiveMachine
Alarm

Availability

DueTime
Event

GeneratorPositionX
GeneratorPositionY
RecastLayerThickness
TotalEnergy
WireCost

WireDiameter
WireType

Description

Difference from the real value of precision in the cutting edge.
The id of the current monitored machine.

A possible alarm raised during the EDM process.

It describes the status of availability of the monitored
machine.

Deadline for the completion of a specific process.

Information that describes the execution of some happening
which could raise an alarm.

The x coordination of the cutting edge.

The y coordination of the cutting edge.

Thickness of the part which will need to be cut.

The total amount of energy currently used.

Given current cost for the order of new wire of the current
used type.

The diameter of the wired used in the cutting edge.

The type of wired used in the cutting edge.

Page 38

Version 1.0 20 December 2018

Confidentiality: Public Distribution

3

SNFIRE D4.4 Full Prototype of Situational Awareness Services
0 AccuracyDeda
on
© TomporadsaSons
o
@ o Ting
S Rearce \ (@ camra & emreees P 8 mesann]
| Y- / Y K
AN
® Focuc @ CuProcuct | ® senscauneins
\
== =2 ﬁ\\m
@ Fradcion ﬁ (@ racmcrce | D
@ Sconardnfoma @ RecastayerThic
oo \ ki
| ® opmsasicn | | @ owrme |
| @ Geraisoaee | | @ vaeTyee |
\
e
\
N\
X @ CNCSatwane
\
\
\\ @ :&Ml
L |
O GoneratorPod s
onY
\ f
Figure 28: ONA specific SAFIRE Situation Model (excerpt)
20 December 2018 Version 1.0 Page 39

Confidentiality: Public Distribution

