

Project Partners: ATB, Electrolux, IKERLAN, OAS, ONA, The Open Group, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SAFIRE Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the SAFIRE Project Partners.

Project Number 723634

D5.6 Integrated Methodology

Version 1.0

25 October 2019

Final

Public Distribution

ATB, IKERLAN, The Open Group, University of York

D5.6 Integrated Methodology

Page ii Version 1.0 25 October 2019

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

ATB

Sebastian Scholze

Wiener Straße 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Electrolux Italia

Claudio Cenedese

Corso Lino Zanussi 30

33080 Porcia

Italy

Tel: +39 0434 394907

E-mail: claudio.cenedese@electrolux.it

IKERLAN

Trujillo Salvador

P Jose Maria Arizmendiarrieta

20500 Mondragon

Spain

Tel: +34 943 712 400

E-mail: strujillo@ikerlan.es

OAS

Karl Krone

Caroline Herschel Strasse 1

28359 Bremen

Germany

Tel: +49 421 2206 0

E-mail: kkrone@oas.de

ONA Electroerosión

Jose M. Ramos

Eguzkitza, 1. Apdo 64

48200 Durango

Spain

Tel: +34 94 620 08 00

jramos@onaedm.com

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of York

Leandro Soares Indrusiak

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325 570

E-mail: leandro.indrusiak@york.ac.uk

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Document Template 12 September 2019

0.5 Full draft with contributions from RTD partners 30 September 2019

0.8 Updates for harmonisation and BC assessments 11 October 2019

0.9 Internal review version 21 October 2019

1.0 Final version 25 October 2019

D5.6 Integrated Methodology

Page iv Version 1.0 25 October 2019

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Overview and Document Structure .. 1

1.2 Definition and scope of the methodology .. 1
1.2.1 Objectives and Scope .. 1
1.2.2 Targeted Audience .. 2

2. Methodology for SAFIRE Platform .. 3

3. Methodology for Predictive Analytics ... 6

3.1 Platform support .. 7

3.2 Methodology for the Unified Process Engine subcomponent .. 8
3.2.1 Overview ... 8
3.2.2 Guidelines ... 8
3.2.3 Algorithms, Technologies and Tools .. 14

3.3 Methodology for the Storage Subcomponent ... 15
3.3.1 Overview ... 15
3.3.2 Guidelines ... 16
3.3.3 Algorithms, Technologies and Tools .. 19

3.4 Methodology for the Visualization Subcomponent .. 19
3.4.1 Overview ... 20
3.4.2 Guidelines ... 20
3.4.3 Algorithms, Technologies and Tools .. 26

4. Methodology for Situational Awareness ... 29

4.1 Methodology for the creation/adaptation of the Situation Model.. 29
4.1.1 Overview ... 29
4.1.2 Guidelines ... 29
4.1.3 Algorithms, Technologies and Tools .. 34

4.2 Methodology for the Customisation of the Situation Monitoring Service ... 36
4.2.1 Overview ... 36
4.2.2 Guidelines ... 37
4.2.3 Algorithms, technologies and Tools ... 40

4.3 Methodology for the Customisation of the Situation Determination Service .. 42
4.3.1 Overview ... 42
4.3.2 Guidelines ... 43
4.3.3 Algorithms, technologies and Tools ... 45

5. Methodology for Optimisation ... 50

5.1 Overview .. 50

5.2 Analytical Platform Models Used in SAFIRE ... 50
5.2.1 Interval algebra ... 50

5.3 Manufacturing Process Planning and Scheduling in SAFIRE .. 57
5.3.1 Problem outline ... 57
5.3.2 Optimisation engine input definition .. 58
5.3.3 System model .. 59
5.3.4 Problem formulation ... 59
5.3.5 Proposed approach .. 59
5.3.6 Genetic representation of metrics.. 60
5.3.7 Evolution-inspired operators ... 61
5.3.8 Single-objective genetic algorithm with unbounded execution time .. 62
5.3.9 Multi-objective genetic algorithm with unbounded execution time .. 63
5.3.10 Genetic algorithm with bounded execution time .. 64
5.3.11 Parallel execution of genetic algorithm ... 68
5.3.12 Specification of fitness function using Factory Description Language ... 72

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page v

Confidentiality: Public Distribution

5.3.13 Evolving fitness functions using genetic programming .. 75

6. Methodology for Security, Privacy and Trust .. 77

6.1 Methodology for the Development of Security Policies ... 78
6.1.1 Overview ... 78
6.1.2 Guidelines ... 79
6.1.3 Algorithms, technologies and tools ... 82

6.2 Methodology for the Integration of NGAC Mechanisms ... 88
6.2.1 Overview ... 88
6.2.2 Guidelines ... 90
6.2.3 Algorithms, technologies and tools ... 93

6.3 Methodology for Overall System Security, Privacy and Trust... 98
6.3.1 Overview ... 98
6.3.2 Approach ... 99
6.3.3 Abstract Platform for SAFIRE Security Implementation ... 101
6.3.4 Security Building Blocks .. 102
6.3.5 Mapping IISF to system architecture and its implementation ... 102
6.3.6 Application of the IISF to SAFIRE platform and Security Services ... 104
6.3.7 Further Applications of SAFIRE‟s NGAC-based security services .. 104
6.3.8 Mapping of NGAC to IISF Security Functions .. 105

7. Conclusions .. 112

8. References .. 113

D5.6 Integrated Methodology

Page vi Version 1.0 25 October 2019

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This deliverable presents the Integrated Methodology of the SAFIRE platform and

comprises the integrated methodological approach as well as practical guidelines for

customising the SAFIRE technologies and platform.

The methodology for the SAFIRE platform can be arranged in four groups of steps,

focusing on BC analysis and scenario definition, BC customisation, platform

integration, and platform testing and release. As first step, the business-specific

requirements are being defined, and in the second step are being applied to the technical

part of the platform, namely the SAFIRE services and modules. In the third step, all the

modules configured for the business case are being connected to work together as an

integrated system which is being tested and accordingly optimised in the business sites

for the last step. The observation of the results from the platform released version is

being observed using the SAFIRE monitoring dashboard.

Additionally, the SAFIRE methodology describes in detail the individual steps to adapt

the four modules, namely the Predictive Analytics (PA), the Situation Determination

(SD), the Optimisation Engine (OE) and the Security Framework (SPT). Some of the

main aspects of the customisation needed on the modules are the data sources and

samples for the PA, the situation model for SD, the optimisation metrics and fitness

functions for OE, and the privacy rules for the SPT.

The integrated methodology aims to support the experts from a given industrial

company (industry experts), to employ technical stuff (SAFIRE experts) able to

customise the SAFIRE services for the selected business needs in order to interact with

the industrial legacy systems. It aims to provide an easy to follow, stepwise, workflow

to accompany all the interest-to-SAFIRE-solution-parties from the business

conceptualisation and specification, to the implementation, testing and release of a

business tailor SAFIRE platform.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW AND DOCUMENT STRUCTURE

This document describes the methodology that needs to be followed to adapt, extend or

configure the SAFIRE solution for a new installation, which requires a specific

customisation for different business cases and scenarios. The steps needed for the setup

of the four SAFIRE modules, namely the Situation Determination (SD), the Predictive

Analytics (PA), the Optimisation Engine (OE) and the Security Framework (SPT), and

their operation within the SAFIRE solution will be described in detail. Furthermore, the

methodology to integrate the SAFIRE solution in the business case scenarios, as well

information on the how the integrated solution interacts with the industrial environment

is being presented.

The structure of the document is as follows:

 Section 1: Introductory description of the document purpose and the targeted

audience.

 Section 2: Definition of the methodology for the SAFIRE platform.

 Sections 3-7: Description of the methodology followed for the adaptation and

extension of the different SAFIRE modules, as well as of the algorithms applied

to setup and customise the platform and its technologies to a business case.

 Section 8: Conclusion of the document and summary of the main points discussed

on the previous sections.

1.2 DEFINITION AND SCOPE OF THE METHODOLOGY

1.2.1 Objectives and Scope

The objective of the SAFIRE methodology is to demonstrate the easiness of adaptability

of the platform to different industrial environments, products, machines and processes,

to achieve higher quality and precision with reduced costs and effort for the different

stakeholders. Following this methodology, the SAFIRE platform can be adjusted, or

extended, to support specific business cases and scenarios, and connect the different and

complex legacy systems.

The SAFIRE solution consists of four main services, namely the Predictive Analytics

(PA), the Situation Determination (SD), the Optimisation Engine (OE) and the Security

Framework (SPT), and is being monitored by a dashboard, to allow the stakeholders in

the industrial environment to observe its operation. The methodology starts with the

common steps followed for integrating all services together, and continues with specific

details for the individual services, and how those can be customised to a business case.

SAFIRE allows for observation of changes in circumstances in which a

product/machine is used, and, accordingly for the processes, circumstances under which

D5.6 Integrated Methodology

Page 2 Version 1.0 25 October 2019

Confidentiality: Public Distribution

they are put into practice, which in turn allows for a dynamic adaptation of the involved

aspects to these varying conditions, using history analytics and predictive algorithms, as

well as, identifying and performing optimisations when needed. SD monitors the

environment of operation of the solution and, as required, calls the OE service to

calculate an optimised schedule based on the new environment information that were

registered. In parallel, PA analyses the data that are being produced in the industrial

environment, as well history data that were fed to the system, and identifies patterns of

events that occur and might affect the operation of the system. Its output is then fed to

the SD which compares and analyses again the situation data and suggests further

actions or calls the OE. During the whole operation of the SAFIRE solution the SPT

ensures the safety of communication between the modules, as well as acts as a shield for

the SAFIRE and its external environment (i.e. the legacy systems).

1.2.2 Targeted Audience

The targeted audience of the present methodology is:

 SAFIRE experts who are responsible for the setup and interaction with the

SAFIRE solution. SAFIRE experts will use the methodology to apply the

guidelines for the adaptation of the data models and the customisation of the

different services, to the selected business scenarios.

 Industry experts who will use the methodology to understand how to assist

SAFIRE experts, with their business knowledge and expertise, towards the

selection, or the fine tuning of the business scenarios, and the successful

configuration and integration of the SAFIRE solution.

 Technology providers who will utilise the open source project technologies in

manufacturing and smart product solutions to achieve improvements and

optimisations in their commercial offerings.

 Researchers / Academics who will utilise the open source technologies to further

the state-of-the-art in manufacturing and potentially contribute to the evolution of

the open source technologies published by the project.

The information provided in this deliverable provides the practical information for each

of these different audience based on the experienced gained from implementing the

industrial Business Case (BC) demonstrators.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 3

Confidentiality: Public Distribution

2. METHODOLOGY FOR SAFIRE PLATFORM

In the complex domain of Manufacturing, information about products, machines and

processes can be crucial for the future improvement and achievement of innovation,

covering the ever-increasing needs of the customers while maintaining low costs and

time to market. SAFIRE aims to enhance the process of information management and

(re)use and offer a medium for advanced big data analysis and situation-based process

optimisation, easy to adapt in the manufacturing environment, and suitable for different

business concepts. Towards this direction, the SAFIRE platform is composed by four

service-modules, namely the Predictive Analytics (PA), the Situation Determination

(SD), the Optimisation Engine (OE) and the Security Framework (SPT). An

informational dashboard is also part of the SAFIRE solution, allowing the users to

observe its operation inside the industrial environment.

The challenge in creating the SAFIRE platform lies in the difficulty on integrating the

different functionalities into one platform able to be used as a plugin in any industrial

environment, performing only simple configuration for individual scenarios. The

following Figure 1 illustrates the structure of the methodology followed to adapt and

integrate the SAFIRE services into one platform in the business cases.

Figure 1: Structure of the SAFIRE Platform Methodology

As shown in the figure above, the methodology followed for the SAFIRE platform can

be structured under four steps:

 BC Analysis and Scenario Definition

The first step on the SAFIRE methodology includes the research and analysis of the

requirements that should be covered by the SAFIRE platform. Industrial and

business goals, customer expectations and needs, as well as particularities of the

selected business cases have to be collected, analysed and structured so as to lead to

specifications for the platform to be developed. During this step, potential actors of

the system to be enhanced by applying SAFIRE technologies could be revealed,

leading likely to more clear or specialised requirements. Additionally, the specific

requirements for the main features promised for the project, namely big data

analysis, situational awareness, process optimisation and security in operation,

D5.6 Integrated Methodology

Page 4 Version 1.0 25 October 2019

Confidentiality: Public Distribution

should be identified. Those requirements should be compared and combined with

those collected for the industry/business, to lead later on in the shaping of

specifications, as well as to a more detailed scenario concept.

This step requires close cooperation of the industry experts with the SAFIRE

experts and potential end users. As a practical example of an operation belonging to

this step, for the development of the SAFIRE solution, the definition of the use case

scenarios (e.g. concept, actors, workflows, etc.) from the business case experts

(within the SAFIRE project BC experts are from the companies: Electrolux, OAS

and ONA) in cooperation with the research partners, could be mentioned.

 BC Customisation

As a second step to the SAFIRE methodology, the customisation of the different

services based on the selected BC scenarios follows. The specifications, which have

been already derived from the process in the previous step are being reviewed, if

necessary, and decisions for the adjustment of the data models, the data exchange

formats/files and the legacy connection modules will be made.

Regarding the current development of the SAFIRE solution, an operation of this

step is the definition of the situation models, and the data exchange formats to be

communicated between the SAFIRE modules and the legacy systems (e.g. xls files,

string json formats, etc.).

 Platform Integration

As part of this step, the individual services are being connected to work together

(full prototype of the services and early prototype of the integrated platform),

exchanging data and pushing their results to the common communication channel

(e.g. Kafka). Additionally, the integrated services are being adjusted (e.g. change

input data source) to interact with the business case systems. Modifications can be

made to the individual modules, as well as to the integrated part, in case any

business case, or scenario, parameter should be adjusted (e.g. data exchange rate or

amount of data traffic allowed). Part of this step is also the description of the

integration process to documents that can also be used as user manuals for further

development of the project or adjustment to different business cases.

This step might reveal the necessity of additional services or modules to assist in

the legacy system integration or in the observation of the platform operation. For

this development of the platform, the SAFIRE dashboard was introduced to

monitor the SAFIRE service-status.

The result of this step is fully functional packaged (e.g. using Docker) modules (i.e.

early prototypes) that are able to accept and process the selected data (including

those coming directly from the business infrastructure).

 Platform Testing and Release

This final step of the SAFIRE methodology describes the testing of the integrated

platform (early prototype of the platform), as well the release of the final version.

The first release of the platform is being validated in the industrial environment, and

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 5

Confidentiality: Public Distribution

the operation of the whole system is being observed using the SAFIRE dashboard.

The tests might reveal conflicts with the legacy systems (e.g. discrepancy in the

security policies, or connection issues due to the configured data exchange options),

or with the internal communication of the modules in real environment (e.g. delay in

result production of a module due to hardware limitations). Those conflicts will be

adjusted to the final version of the platform (in case those require platform

adjustments), or during the installation process (in case those are due to

configuration options).

The steps mentioned above, described above present the common methodology to

create the generic SAFIRE solution. The next sections describe the individual

methodologies for the customisation of each SAFIRE services (Predictive Analytics,

Situation Determination, Optimisation Engine and Security Framework), and give a

more specialised insight in their structure.

D5.6 Integrated Methodology

Page 6 Version 1.0 25 October 2019

Confidentiality: Public Distribution

3. METHODOLOGY FOR PREDICTIVE ANALYTICS

The Predictive Analytics Platform allows doing advanced analytics in real time, storing

huge amounts of data and web visualization tools to easily query and visualize the

stored data. Moreover, the Predictive Analytics Platform offers different web services

for interacting with different modules.

The Predictive Analytics module is related to the following steps. Every step on the list

must be taken into account for the system design and at the time of adding additional

business cases.

 Define goals: define the goals in the business case, datasets involved,

performance, etc.

 Data collection: select mechanisms to collect needed data. Define storage needs.

 Data Analysis: cleaning, filtering, transformation of collected data. Several

statistical techniques can be applied to explore relations, correlations, etc.

 Predictive Analytics: functions to create, train and test models that can be used

to predict values from past sets of data.

 Visualization: visualization types needed to present results to the user.

Depending on the needed data processing power, the platform can consist of one or

several computing nodes automatically instantiated and configured. The predictive

analytics module is composed of three general sub-modules (Processing Engine,

Storage, Visualization), with well separated responsibilities. As the computing power

needs of each sub-component can vary greatly, every sub-module can be executed in

different machines and scale independently.

The proposed approach to predictive analytics in the SAFIRE solution is summarised in

Figure 2.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 7

Confidentiality: Public Distribution

Figure 2: Approach for Predictive Analytics within SAFIRE

The following sections present the general and adaptable platform supporting the

Predictive Analytics module, the decomposition in sub-modules and some guidelines

useful to adapt them to the different business cases. Additionally, the algorithms,

technologies and tools used are described. The backbone of the sub-modules is

composed of open source components, carefully selected by being some of the current

components with good quality and well-known performance. Their configuration

capabilities are in line with the need for easy adaptability to new business cases. The

technical detail of every software component used is defined in deliverable D2.3.

3.1 PLATFORM SUPPORT

There are several software components in the solution that can be combined and can

profit of several machines, scalability, etc. The solution proposed uses those

capabilities, trying to isolate the end user from the technical complexities.

Depending on the use case, more or less computers can be used, configurations can be

changed, or the deployment can be on-cloud or on-premises. In the general case, manual

configuration and deployment would be a daunting task. The chosen approach is the use

of Infrastructure as Code (IaC). The configuration of the platform is defined in an easy

and well-defined syntax, parsed, validated and executed by tools.

In the proposed solution, the deployment is done using Terraform. The number and

characteristics of the machines deployed in Amazon Web Services (AWS) is defined

via some parameters. The specific networking and permissions are also defined and

configured by Terraform.

D5.6 Integrated Methodology

Page 8 Version 1.0 25 October 2019

Confidentiality: Public Distribution

When the machine instantiation is finished, every machine must be provisioned

(software installed and configured). To do that, a similar method is used: a text file can

be written to define the configuration tasks to be executed in every machine. This

source file is parsed and executed by Ansible, a tool that checks the configuration in

every machine and executes the tasks defined to arrive to the desired state.

With this IaC approach, deployment and configuration of several machines can be

performed automatically in a reproducible way, avoiding the common mistakes in

manual processes. Changes in configuration can be tested and deployed easily.

Depending on the new business case‟s needs scripts can be adjusted accordingly to

increase the size of the computer cluster.

3.2 METHODOLOGY FOR THE UNIFIED PROCESS ENGINE SUBCOMPONENT

3.2.1 Overview

The Unified Processing Engine provides support for doing advanced analytics on both

real-time and batch approaches.

In order to enable predictive analytics in SAFIRE, the Unified Process Engine

subcomponent should have access to relevant business case data. Any analytics

processing with data that is incorrect or unrelated to the business case goals would be

useless.

The subcomponent should be prepared to receive different kinds of data, from different

sources and a wide range of ingestion rates. In order to incorporate a new business case,

an initial study of the business case needs should be performed. This study about the

goals and data characteristics of the business case is essential for the success of the

whole process and enough time and resources should be allocated to it.

3.2.2 Guidelines

Before the customisation of the Unified Process Engine, and its configuration for a

business case, some steps should be considered:

1. Assessment of available data and definition of expected result. The first step

when applying the predictive analytics platform to a new use case is to assess all

the data that could be made available for the predictive analytics module, not

just the data that will actually be used. With the available data in mind, a clear

business goal or goals must be set. This process is iterative in nature until a

realistic goal is found based on the available data. SAFIRE experts and business

case experts should be involved in the process.

2. Data selection. Select the data related to the defined goals. Some of the

previously considered data could be irrelevant for the business case aims.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 9

Confidentiality: Public Distribution

3. Pre-processing. Some preliminary treatment of data needs to be performed in

order to clean the data (remove unnecessary data, treat noisy data, standardize

values, handle missing values…).

4. Data transformation and analytics. Depending on the predictive goals and the

available date, some algorithms are better suited than others for a specific

analytics problem. Once a SAFIRE expert has a good understanding of the

problem at hand, the expert will be able to present a subset of algorithms to test

individually and compare results among the different possibilities. Most

predictive algorithms impose restrictions on the characteristics of the data can

handle, and such restrictions are particular to each algorithm. In order to find the

best suited algorithm for the problem in hand this step has to be performed

iteratively, adjusting the data to the next algorithm to be tested and then carrying

out a benchmark experiment to assess the performance of the algorithm to the

problem at hand and the selected data.

This process is iterative. The results of some step could suggest changes in the

decisions from previous steps. Once the process has been set, it is ready to be

deployed into the Unified Process Engine.

The platform will require some minor changes to adjust to the particularity of the

new business case. Figure 3 shows the internal subcomponents of the Unified

Process Engine. The main driving component is the Predictive Agent which remains

unchanged from business case to business case. The other subcomponents, however,

need to be adjusted to the selected data and analytics.

D5.6 Integrated Methodology

Page 10 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Figure 3: Sub-components of the Unified Process Engine

 The transformers, marked in blue, transform the messages received from and

sent to outside the Unified Process Engine. The communication is performed

using publisher/subscriber technologies and sending serialized JSON objects

from publisher to subscriber. Some elements of these serialized messages are

common and known, however most of them are dependent on data selected for

the business case. These transformers make transformations between the JSON

objects of the Kafka messages and datasets.

o Raw Data Transformer receives the historic and current streaming data

that will be used to train and update the predictive models. For a new

business class this needs to be adjusted to be able to handle different

structures of data and create datasets with different numbers and types of

columns. The data handled by this transformer needs to be tagged with

the known value for the variable to be predicted.

o Prediction Request Transformer receives new prediction requests. For

a new business case this needs to be adjusted to be able to handle

different structures of data and create rows with different numbers and

types of columns. The data handled by this transformer will not be

tagged with the predicted variable since that is the expected goal of the

request. However, these messages will need to have a traceable variable

that, while not used to make predictions, is needed to trace prediction

requests and variables. This traceable value does not need to follow a

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 11

Confidentiality: Public Distribution

specific format, but its value should be unique, so a UUID-like string

value is recommended.

o Prediction Transformer transforms the results of the prediction so that

it can be sent back to the module that made the request. For new business

cases this needs to be adjusted for potentially different result types (a

numeric value for regression problems, a class and optionally class

probabilities for classification problems).

o Prediction Result Transformer handles responses to whether a

previously made prediction was correct or not. As with the rest of

transformers it will need to be adjusted to the specific result type of the

prediction. This transformer is optional because it is not needed for the

correct functioning of the module. However, receiving feedback about

the accuracy of made prediction helps with keeping models accurate and

up to date.

 The Data Cleaner subcomponent, marked in yellow, is in charge of cleaning the

data to first, get rid of any unnecessary data, and adjust the remaining data so

that it conforms the restrictions of the algorithm to be used. It is in charge of

performing the data cleaning and adjusting tasks of steps 3 and 4 defined at the

beginning of this section, and such, for a new business case it will need to be

adjusted to perform the data cleaning and transformation tasks defined in those

steps.

 The Predictor sub-component is in charge of making the predictions. It is a very

simple component where the only adjustment needed is to implement the use of

the predictive algorithm selected for the problem at hand.

 The writer components take the data transformed by the different sub-

components of the Unified Processing Engine and persist in the Storage sub-

module of the predictive analytics module. For a new business-case adjustments

need to be made for the specific storage solutions and data structures.

o Data Writer receives the raw data to be used to train the predictive

models.

o Prediction Result Writer is optional like Prediction Result Transformer

and works in conjunction with it. It stores prediction results to further

improve the predictive models. The changes needed to this writer are

minimal compared to the Data Writer.

Aside from the code modifications described in this section, configuration changed will

need to be made as well to adjust to the new use case. The following portion of code shows

the configuration file in YAML format (config.yaml) of the OAS use case of the SAFIRE

project. YAML files contain a set of key-value entries, similar to JSON files, structured hi-

D5.6 Integrated Methodology

Page 12 Version 1.0 25 October 2019

Confidentiality: Public Distribution

erarchically using indentation to set the level of each entry. Due to their simple viewing

style and low overhead, for configuration purposes this file type is preferred for configura-

tion files compared to others like JSON or XML.

Figure 4: Configuration file example

The structure of the configuration file for the Unified Process Engine is not fixed and will

need to be adjusted to the use case in particular.

streaming:

 kafka:

 eventTopic: raw_data

 batchTopic: new_batches

 predictionTopic: predictions

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 13

Confidentiality: Public Distribution

public class Configuration implements Serializable {

 private Streaming streaming;

 public static final class Streaming implements Serializable{

 Kafka kafka;

 Db db;

 public static final class Kafka implements Serializable{

 String eventTopic;

 String batchTopic;

 String predictionTopic;

 String servers;

 String correctionTopic;

 }

 public static final class Db implements Serializable{

 String host;

 String user;

 String pass;

 String name;

 String schema;

 String port;

 }

 }

}

D5.6 Integrated Methodology

Page 14 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Figure 5: Configuration code example

This configuration YAML file can then be easily mapped to an object with the exact same

structure as the file by using a few lines of code.

The config .yaml file in Figure 4 and the Java class in Figure 5 have the exact same struc-

ture. Thus, the values from the file will be mapped into this object at runtime providing easy

to use access for all of the entries.

For a new use case, both the configuration file and the containing class will need to be ad-

justed to reflect the particularities of the use case. The new Java file should match the new

configuration file exactly and vice versa.

3.2.3 Algorithms, Technologies and Tools

Apache Zeppelin is a web notebook maintained by the Apache Foundation. Web notebooks

work in a similar manner to console shells, interactively running the commands provided by

the user, instead of having to write all of the code and compile the project beforehand. Run-

ning in a web browser and being able to make use of rich web components instead of a sim-

ple command line interface adds great value to this technology. Web notebooks also have

the inherent advantage of being able to be used remotely from the user‟s local machine.

Zeppelin is specially oriented to data analytics and visualizations, which makes it a perfect

candidate to be used in SAFIRE implementations.

In order to adjust the Unified Process Engine to new cases, the analytics aspect of Zeppelin

is of great use. Once set-up, this tool will allow SAFIRE experts to quickly test different an-

alytic and predictive algorithms over the data of the new business case, without the need of

building a complex framework even before the true work begins.

Once the algorithms and pre-processing to be used have been defined, the production pro-

cess should be implemented in Apache Spark. The main technology behind the process en-

gine is Apache Spark. This framework allows seamlessly running applications across multi-

ple computers networked together. It works on top of a distributed file type system by which

all computers running together share a common file system even some files are physically

located in as little as one of the computers. From a coding point of view, it does not matter

how many computers are networked together, the code is the same. It works by applying the

MapReduce methodology where a central node works as master, coordinating the rest of

nodes or workers, dividing the work among them and collecting their results.

Apache Spark is able to handle processes that work in batches where a defined chunk of data

is processed, but also streaming processes where the flow of data is continuous, and data is

handled as it comes.

SAFIRE implementations will make heavy use of two subcomponents of Apache Spark:

SparkSQL and MLlib, Spark‟s Machine Learning library. SparkSQL provides a SQL-like

language and set of implemented methods to handle and manipulate data. Thanks to the lat-

est developments within Spark, nowadays it is possible to use virtually the same code to run

batch and streaming works. The MLlib library provides a set of data processing and machine

learning algorithms to perform predictive analytics on the data.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 15

Confidentiality: Public Distribution

However, Apache Spark is still a growing technology. Each new version adds new technol-

ogies and algorithms, but it is possible some of the necessities might not be covered by the

framework. One such case in SAFIRE implementations is the use of neural networks for re-

gression tasks. Apache Spark currently only allows using neural networks for classification,

not regression. In this case we can use the Tensorflow library developed by Google, through

the Keras library.

Apache Zeppelin combines perfectly with the technologies used in the Unified Process En-

gine as it is able to connect to Apache Spark and Keras using Scala and Python code.

3.3 METHODOLOGY FOR THE STORAGE SUBCOMPONENT

3.3.1 Overview

The Storage subcomponent is the responsible for the data storage (raw data, processed

data, predicted values), in different places. Data can be fed directly from the data

ingestion system (Apache NiFi) or, depending on the needed data pre-processing and

cleaning, can be published to the Apache Kafka broker so it can go through the Unified

Process Engine. Figure 6 shows the different data flows that lead to the storage sub-

component.

Different business cases have different data storage needs. The data storage

subcomponent can store data in relational databases or NoSQL databases.

Figure 6: Data flow to Storage sub-component

D5.6 Integrated Methodology

Page 16 Version 1.0 25 October 2019

Confidentiality: Public Distribution

3.3.2 Guidelines

When applying the SAFIRE methodology to a new business case, the storage

subcomponent of the predictive analytics platform will also need to be adjusted. The

guidelines in this section are not as specific as those for the Unified Process Engine,

since there is some subjectivity in the decisions and adaptations in the storage sub-

module are much more heavily influenced by the business case‟s particular needs and

the people involved in the process.

The first decision that needs to be made is how the data will be stored. This decision is

actually made up of several smaller decisions, but the most relevant is if data will be

stored in relational format or non-relational format.

Traditionally, the most-widely used databases have been relational databases. In

relational databases, each entity of data is stored in a table. The structure of these tables,

or in other words, the schema of the database, needs to be defined before data can be

entered into it. Tables are made of multiple fields referred to as columns, and some

columns, act as relationships between different tables. Relational databases aim to

reduce the redundancy of data by containing big pieces of data (portions of text, for

example) In only the most relevant table, and then linking this big piece of data to any

needed entity by using smaller, more storage-wise efficient, numeric fields for cross-

reference. These numeric references can then be used to create single queries that can

span across different entities (tables) and create a single return value of all the needed

information. The relationships between tables can also be used to define integrity

restrictions the data has to conform to. For example restricting the values a field can

have, or ensuring that relationships between entities are enforced when modifying the

data. Relational datasets are also referred to SQL-databases because all of them use the

standard query language (SQL) to create, modify and access data. Figure 7 shows the

example of a simple relational database.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 17

Confidentiality: Public Distribution

Figure 7: Example of relational database

As of late, new database paradigms have emerged under the “NoSQL” umbrella. Their

common thread has nothing do with the SQL language. In reality, their commonality is

that data is not stored in entities related by fields, they do not have relations between

entities, and so, are not relational. Two of the most typical types of NoSQL database

systems are document-oriented databases and key-value entry type datasets. Document

oriented databases store entries in JSON-like documents, where each document contains

several fields where the value can be a number, a piece of text, blobs of data or even

other sub-objects. The first most obvious benefit of this type of databases is that there is

no need to define a prior structure for the data. In fact, each entry of the data can have a

new and different structure and the database system will be able to work around that

characteristic. This results in a much smaller set-up time and freedom to add new

information to each entry later on.

Throughout this section stored data will be considered of one of three different types:

 raw data

 processed data

 and result data

It should be noted that these three types do not need to be stored using the same

database type. For starters each organization will have a preferred way to store the data.

Also, each new business case will have different needs of how the data is produced and

how the data should be stored.

D5.6 Integrated Methodology

Page 18 Version 1.0 25 October 2019

Confidentiality: Public Distribution

For the initial raw data, taken straight from the source with little or no pre-processing,

even if it is not a rule set in stone, at least as a first step, raw unfiltered data should be

stored in a similar format to how it is created in order to avoid spending computing

power on data that could be discarded on a later step.

As long as the hardware-software infrastructure allows it, as much data as possible

should be stored. This allows both opening new exploration avenues later on with data

that was not considered earlier, and making potential corrections to mistakes done

during the analytics process by avoiding to having to discard data because of a

discovery of needing more data than considered at the beginning. Redundant data and

pieces of information to little or no value can be discarded, as long as both the domain

and SAFIRE experts agree on the uselessness of the information. If runtime

performance is a concern, raw data can be kept on a separate server to avoid

interference with runtime data-related operations.

The next type of data is processed data. Periodically, the raw data is analysed, treated

and converted into a format that can readily be used by the predictive algorithm of the

unified process engine. The format and storage solution of this data will be heavily

influenced by the predictive analytics selected for the process engine.

Retention policies need to be defined for the processed data. A big, always increasing

database system can suffer from poor performance. In a traditional batch processing

context this could simply mean waiting a little longer for the processing to be finished,

but in a streaming context, this can result in processing taking an unacceptable waiting

time and ever-increasing delays in the analytics process. Retention policies define how

much data and for how long it is stored. The size of the retained data will depend

heavily on the particular needs of the business case and the computing capabilities

available. In some cases, due to the analytics process, discarding data could be

unaffordable because as much data as possible is needed. In these cases, the possibility

of creating different predicative models should be considered. For example, for a

photovoltaic plant context, the season the data is taken is of key importance and

different models can be created for each season. Processed data for each season and

their predictive models could be kept and trained in different servers. Discarded data

could be transferred to another independent system where it does not interfere with the

analytics for potential new uses of the processed data. This backup of the processed data

is optional since, if the raw data is always kept, it will always be possible to recreate the

processed data.

The final type of data, result data, is mostly kept for internal purposes. Each time a

prediction is made, the parameters that led to this prediction and the prediction itself

should be stored. Later, the user of the prediction could update the predictive analytics

module on the usefulness of the prediction, by telling whether the prediction was

accurate or not. This information can be used for reporting purposes and even as

feedback for the predictive model, to increase its accuracy in further predictions.

The intuitive way of storing this information is in a document format with a document

per prediction however depending on the expertise of the individuals working on the

reporting system other possibilities could be considered, such as using relational

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 19

Confidentiality: Public Distribution

database tables as document holders, since in this case, the structure of each entry

should be the same.

3.3.3 Algorithms, Technologies and Tools

Each new use case will have certain needs that will be covered by some storage

solutions and not others. NoSQL databases are quite diverse and the tools and

technologies to manage them vary greatly. Relational database systems on the other

hand, while offering a wide set of different tools and possibilities, do have a degree of

consistency on how they store and handle data, as in the end they all conform to the

SQL standard.

Usually, businesses use enterprise-grade relational database systems such as Oracle

Database and Microsoft SQL Server, which are proprietary products developed by

corporations. On the other hand, there also are free and open source solutions that are

fully secure and trustworthy solutions, thanks to the vast communities developing and

auditing their source code. Open source solutions can cater to the needs of a wide range

of organizations. PostgreSQL is a very robust and advanced solution. Other solutions

such as MariaDB (formerly MySQL) and sqlite provide more lightweight solutions that

can be set-up with a much lower effort if the requirements are lesser.

While some relational database systems include their own development and data

management tools, there are also multiplatform SQL client tools, such as Dbeaver and

Toad, that offer a common interface for different types of database technologies. These

tools make the behind-the-scenes SQL technology transparent for most functionalities.

When interfacing SQL databases with the Unified Process Engine, code libraries can be

used to ease the manipulation of the data by the engine. ORM (Object-Relational

Mapping) technologies, such as ORMlite and JPA, bridge relational databases and

objects. By means of these tools, each row of the database is represented by an object

(such as a Java object) that has the same structure as the database table the entry

belongs to. These objects can be manipulated as if they were simple objects, unrelated

to a database, and changes can then be mapped from the object to the database. Some of

these technologies even offer the ability of making changes to the database in real-time.

If a value in an object changes, the related entry of the database is automatically

modified to reflect the change.

NoSQL databases offer a wider variety of features and possibilities because NoSQL is

simply an umbrella term that covers all non-relational technologies. NoSQL databases

can store data oriented to documents (MongoDB, Couchbase, CouchDB, DynamoDB),

key-value entries (Redis, Casandra) or even multi-nature data.

3.4 METHODOLOGY FOR THE VISUALIZATION SUBCOMPONENT

D5.6 Integrated Methodology

Page 20 Version 1.0 25 October 2019

Confidentiality: Public Distribution

3.4.1 Overview

The Visualization subcomponent is the responsible for the display of data to the user

(raw data, processed data, statistics, predicted values, etc.) in a variety of visualization

styles (tables, graphs, etc.).

The Visualization subcomponent is defined so that the user can select one or several

datasets and choose some aspects to visualize (raw data, filtered data, some statistical

values, predicted values...). The selection of datasets and aspects to visualize will be

performed in an easy way, selecting from a list of options offered by the system.

3.4.2 Guidelines

The visualization of the stored data is fully dependent on the business case thus there is

no silver bullet that can be used in every new use case. In this section a few guidelines

will be provided to configure and use Apache Superset, a highly configurable tool for

data visualization, where almost everything is configured via web interface.

Superset Dashboards are collections of Charts. Charts need a Table to draw data from

and Tables need databases or datasources. Thus, once Apache Superset has been setup,

the first step is to define datasources. Apache Superset is specially oriented to OLAP-

like data storage solutions. However, it can work perfectly with the simplest relational

database systems and supports SQL queries to access the data.

Datasources are created by first clicking the Sources option at the top menu and then

clicking Databases. This leads the use to the existing database list, which should be

empty at first. New databases are created by clicking the green round button at the top

right corner of the database list. Figure 8 shows the web interface used to create new

datasources. The mandatory fields are the name which is the identifier used throughout

Superset to refer to this database and the connection URI conforming to the following

format:

dbtype://username:password@databasehost:databaseport/databasename

The connection can be tested clicking the button just below the URI to test that all

parameters are correct, and the server is reachable with the provided credentials.

With datasources defined, tables can be created. Tables can either be literal database

tables already present in the datasource or can be newly defined tables based on a query

to the real database, akin to views in relational database systems. Tables are defined

using the Tables option of the Sources menu item at the top. The interface shown on

Figure 9 is used to define tables. If the table already exists in the database, the only

needed fields are the name (written exactly as in the database) and the database name

which is a dropdown menu with all available options from the previously seen database

list. If the table is defined, as if it were a view, the name can be made up but then a SQL

sentence capable of creating the table must be provided.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 21

Confidentiality: Public Distribution

After tables are created, the next step is to create charts using them. Charts are created

by clicking the Charts option in the top menu and then clicking the green round button

at the top right corner of the list. This will present the interface shown on Figure 10.

This interface is mostly a web-based point-and-click interface that most of the time will

not need any SQL knowledge.

The left-side menu allows the use to first select the data source (one of the Tables

defined earlier) and chart type. Not all chart types are available to every type of data

source, so for each new business case the available chart types will vary. Figure 11

shows an example of available chart types in Apache Superset. If, for the new use case,

OLAP-oriented visualizations are used, it is highly recommended that the Storage-

subcomponent either have an OLAP-based data warehouse as main storage, or create a

basic data warehouse to store the processed data and act as middle man between the

main storage and the visualization subcomponent, to avoid performing heavy queries

periodically each time the visualization interface changes or is updated.

D5.6 Integrated Methodology

Page 22 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Figure 8: Database creation interface of Superset

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 23

Confidentiality: Public Distribution

Figure 9: Table creation interface of Superset

After defining the datasource and chart type, the table‟s fields have to be handled. The

following options are dependent on the chart type. The charts shown in these figures are

of time-series nature, so one of the dimensions is the timestamp of the entry. Due to the

nature of the chart, this timestamp and the time range can be selected in the next portion

of the interface. The next portion of the chart is common for all types and allows

D5.6 Integrated Methodology

Page 24 Version 1.0 25 October 2019

Confidentiality: Public Distribution

selecting the metrics that will be shown in the chart. Each of this metrics is formed by a

column, and if necessary, an aggregator for this column (max, min, count, avg…).

Finally, columns to group by to can be selected (necessary if aggregations are used) and

the limit of the query response can be set.

The next portion of the menu is optional and allows to hardcode a specific WHERE

clause using SQL in case a fine-grained query is needed that cannot be set using the

interface options (e.g. subselects).

Figure 10: Chart creation interface of Supertset

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 25

Confidentiality: Public Distribution

Figure 11: Available chart types in Apache Superset

D5.6 Integrated Methodology

Page 26 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Finally, after defining one or multiple charts, a dashboard can be created. For this the

user needs to click the dashboards option at the top and once the new page is loaded,

click on the round button at the top right corner. This new interface allows defining the

charts that will comprise the dashboard, and the filtering parameters and chart positions

using a not very straightforward JSON definition. It is not advisable to use this interface

for anything other than giving the dashboard a name. All other actions can be done

visually on the dashboard itself by clicking Edit Dashboard at the top right corner of the

interface as shown on Figure 12 and then using the different available actions to

perform such tasks.

Figure 12: Example Dashboard

3.4.3 Algorithms, Technologies and Tools

As mentioned in Section 3.2.1 when discussing the tools for the Unified Process

Engine, Apache Zeppelin can play a significant role in visualization. Traditional shell

applications were limited by the command line interface they run on. Web notebooks

can pretty much offer everything a website can show.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 27

Confidentiality: Public Distribution

Figure 13: Data visualization with Apache Zeppelin

As with the data processing and predictive algorithm testing, thanks to its interactive

nature, Zeppelin can be used to test quick ideas around which visualization types to use,

which will be different for each potential business goal presented to SAFIRE experts.

Figure 13 shows some possible data visualizations that can be created using Apache

Zeppelin.

Once the visualization types have been defined, however, the main load of visualization

will be handled by the main visualization tool, Apache Superset.

Superset is a business intelligence web visualization tool originally developed by

AirBNB and incubated by the Apache Foundation. Its main utility is to create rich and

interactive dashboards using a wide array of readily available visualization chart types.

It can connect to classical relational databases and current data warehouses, data lakes

and NoSQL storage solutions. Most of the configuration of Superset dashboards is done

using the web interface without actually needing to use any code to select the data to be

shown. However, it is possible to use custom code to further extend the possibilities

natively provided by Apache Superset.

D5.6 Integrated Methodology

Page 28 Version 1.0 25 October 2019

Confidentiality: Public Distribution

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 29

Confidentiality: Public Distribution

4. METHODOLOGY FOR SITUATIONAL AWARENESS

4.1 METHODOLOGY FOR THE CREATION/ADAPTATION OF THE SITUATION MODEL

4.1.1 Overview

In order to enable situational awareness in SAFIRE, first it is necessary to describe the

situations to be observed under the production process or product use. This is necessary,

since the SD Module is not able to identify any situation unless its structure and related

data configuration is predefined. The situations to be observed are defined in the

situation model. The situation model defines the limits of the required situations, as well

as the framework of the data that will be analysed and the relations between them. In

order to more accurately identify situations based on the needs of

a specific scenario, different situation models should be created.

Within the SAFIRE solution, a generic situation model is created,

and one BC-specific model for each business case. For covering

a wider range of BC-specific needs, a company specific model

can be developed per business case (or an intermediate sector-

specific model). The situation model will include information on

product/machine usage, process operation information,

infrastructure usage and actor information when those affect or

interfere with the observed situations.

The key task for the correct operation of the SD module is the

definition of a „holistic‟ and dynamic situation model/ontology,

taking into account several factors:

 the situation of products/machines and

processes, in which the product/machine is used,

 the situation of the user,

 the process-operation information.

The ontology-based situation modelling is promising to be

applicable to the wide scope of SAFIRE, asking for minimal

adjustments or developments.

The following sections present the guidelines for creating a

generic situation model is being described, as well as how to extend it to more BC-

specific ones. Additionally, the algorithms, technologies and tools used are described

could be found below.

4.1.2 Guidelines

The approach selected to model the situation is ontology based. Due to their flexibility,

expressiveness and extensibility, ontologies can be considered as the most suitable

candidates for situation representation. They ensure that different entities that use the

situation data have a common semantic understanding of that data. They also come with

Figure 14 Figure 15: To be named

D5.6 Integrated Methodology

Page 30 Version 1.0 25 October 2019

Confidentiality: Public Distribution

reasoning mechanisms over the available situation data, making it possible to extract

inferred knowledge out of the implicitly stated situations. The key task is the definition

of a „holistic‟ and dynamic situation model / ontology, taking into account the situation

of products/machines and processes, in which the product/machine is used, situation of

the user, or process operation etc.

For defining a situation model (per observed situation), the following steps are to be

followed:

Figure 16: Tbn

1. Identification of the requirements for situational awareness.
The objective of this stage is to obtain a detailed description of the different

scenarios than can be monitored by the SD module. This description includes:

 the identification of the different sources of data and the type of data

available,

 the correlations between the different data sources and the observed

scenarios,

 the identification of which of the available data are relevant to the

monitoring.

The starting point for the specification for situational awareness is the

performance of a workshop where all the stakeholders take part: SAFIRE Experts

and industry experts such as plant managers, process managers, machine

operators, quality control managers and operators, Marketing Staff, Product

Design, etc. It is recommended that the workshop follows Zwicky‟s General

Morphological Analysis (GMA) [Zwicky, 1969] for problem identification/

solving, that has been extensively applied in the study of the structural

relationships between the different parts of an element/system of study facilitating

the identification of the inputs/outputs of production systems and the study of the

different interactions between their elements/components [Ostertagová, 2012].

The outcomes of the workshop and the methodology used for the effective

performance of the workshop is detailed in the Appendix 1 of the present

document.

2. Definition of the domain entities.
Out of the outcomes generated in the first step, an SAFIRE expert identifies the

general entities that aggregate all the relevant data together, and describes the

basic relations between them. In order to obtain an easy to use and clear situation

model, understandable from non-experts and reusable for different scenarios or

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 31

Confidentiality: Public Distribution

business cases, the following rules shall be used for the definition of the

entities/classes and their relationships:

 Use of simple and singular terms for the concepts.

 Use of terms that are well-known in the domain of application of the

observed scenario that are confirmed with domain experts. For the SAFIRE

solution, the industry experts could give valuable information and approve

the selected terms. Therefore, their support should be used constantly during

the process of definition and reviews of the situation model(s).

 Provide a clear description of the entities and the relations chosen.

3. Creation of the hierarchy of entities.
Structure the selected entities in a hierarchy based on the “is_a” relation. This

way a rational schema of the situations to be observed will be created and will

enable the easy review and refinement of the model.

4. Verification of the situation model.
Review the situation model created so far and refine the entities and the relations.

This step is important since it will allow an overview which might reveal

redundant information inclusion, or missing categories that are important for the

accurate evaluation of a situation. This step, as well as the previous two, are

executed iteratively until the result matches the best the required situation to be

observed.

5. Design, verification and validation of the situation model in RDF/OWL.
Create a situation model in .owl format, so that the SD module can read it,

including the specified relations between the entities. The tool used to implement

the ontology is Protégé, widely used in semantic web development and very user

friendly. Protégé includes tools to verify the correct syntax of the model and also

includes an inference engine and the SPRQL Language for inference resolution

that can be used to validate the model before its integration in the “Situation

Model and Determination Services”.

6. Proceed on creating more specialised situation models (BC and company

specific situation models) by repeating the steps mentioned before. For the BC-

specific situation models (and respectively for the company specific) the first step

of the situation modelling methodology should be focus more targeted to the BC

specific particularities. The process will start having the generic situation model

as basis and will continue until the necessary business-case related information

are added under the generic concept classes. For this step, close cooperation of the

modelling experts with the industry experts is necessary.

Challenges

The analysis of the scenarios to be observed and the definition of the situation model(s)

is not an easy process. Depending of the scope of the scenario the situation model can

D5.6 Integrated Methodology

Page 32 Version 1.0 25 October 2019

Confidentiality: Public Distribution

be very complex and the identification of, explicitly, the relevant data to be used might

be difficult to proceed.

The key problems in defining a situation model are:

 Where is the border between the basic operation of the SAFIRE solution and the

extended operation using situational awareness?

The SAFIRE approach to this challenge is initially to define its basic operation.

A basic operation of the solution is the one that takes only into consideration

aspects that remain static within the given scenario of observation. For instance, if

the scenario concerns the operation of a factory process, then the related static

aspects could be information on the specialised hardware used (e.g. number of

processors, power resources needed, etc), or information on the personnel who

operates the specialised hardware. Information that could change over time (e.g,

availability of the needed hardware infrastructure, or presence of the personnel

needed), and is observed during this period cannot be taken into consideration for

the basic operation of the SAFIRE solution, since this information is not

automatically identifiable from the system. In this case, the difference from the

extended operation is foreseen. The operation of the SAFIRE solution using

situational awareness will consider all the information that is relevant for the

observed scenarios and could change over time, allowing the adjustment of the

functionality to the current needs of operation or usage of processes, products and

machines.

 Which is the relevant information to be associated with the situation model?

For SAFIRE, situation can be considered any information available (represented

by a concept class) about the circumstances under which products/machines and

processes operate or are being used. Any of this information could be included in

the situation model to define the scope of situational awareness. However,

considering all the available data and processing them will increase the costs (e.g.

for sensors, processing algorithms and computers), therefore, it must be carefully

studied which information has to be included in the situation model. The decision

on which information to include, and which not, depends (exclusively) on the

purpose of the situational awareness, i.e. to which changes in the circumstances

we want to adapt the operation of SAFIRE and to which circumstances the

SAFIRE modules need to perform an action. For instance, if we need to adapt a

process or the functionality of a product/machine when the temperature in the

room where the process is running, or the product/machines is being used, then

the information “room temperature” should be included in the situation model, as

it is a necessary aspect to drive the SAFIRE operation. On the other hand, if the

processes or the products/machines do not operate in a different way on a change

in the room temperature, then the SAFIRE modules do not need to consider as

situation the related data, therefore, the related information can be omitted from

the situation model. On the same way, information that do not need to be

explicitly used for adjusting the operation of SAFIRE to occurring circumstances,

should not be included in the situation model.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 33

Confidentiality: Public Distribution

BC-specific Situation Model(s)

Following the approach described above, for each scenario which the SAFIRE solution

will observe, a situation model should be created. Depending on where the focus, or the

purpose, for situational awareness of the scenario is, the situation model will include

only the related part of information. The following figure presents an example of an

extended generic situation model to match the BC specific requirements related to the

“GenericDatum” concept class.

 Figure 17: SAFIRE Generic Situation Model extended to BC Specifications

For cases where the focus of the scenario is wider, and in order to avoid high costs of

processing, more situation models can be created to cover all the necessary aspects of

the same scenario. For example, in the case of requiring a production process specific

model, the “ProductionProcess” Class can be extended accordingly, as shown in the

picture below.

D5.6 Integrated Methodology

Page 34 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Figure 18: New SAFIRE Situation Model for a specific production process

In the illustration it can be observed how “ComponentProduction” can be further

extended, ideally with models provided by a third-party like the component

manufacturer. Before attempting the design of the new model it would be necessary to

research about the existence of previous ontologies that might already exist (e.g. by

searching the W3C community and business groups1 related to ontologies) and could be

integrated within the model.

4.1.3 Algorithms, Technologies and Tools

The situation modelling includes the identification of a set of features that determine the

situation under which products/machines and processes are being used or operate, as

well as their usage related concepts. Consequently, it includes the identification of the

set of parameters to be monitored depending on the use-case scenarios to be covered.

Since ontologies allow for flexible representation of information in a structured way,

this approach was chosen for the situation modelling. Additionally, an OWL-based

situation model provides an explicit machine interpretable knowledge representation,

and (re)use. However, modelling using this approach, as already mentioned, could be

costly, therefore, the following principles were identified to enhance this process:

PRINCIPLES FOR SITUATION MODELLING

1 Initial consideration of a main situation with basic data needs.

 This principle will allow for an initial simple and implementable solution to be

created. The initially simple model will require more limited resources for

processing than a more detailed one, and at the same time will provide a quick

overview of the highlevel necessary information. After the completion of some

first test operations of the SAFIRE solution, this simple model can be extended

and more deep level information can be added.

2 Initial modelling of easy acquirable situation.

1 https://www.w3.org/community/

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 35

Confidentiality: Public Distribution

 Based on the provided (by the respective experts) industrial means (e.g. sensors,

data files, user feedback, etc.) for acquiring situation information, easy

acquirable situation is the one which could be identified within the available

data inputs. Therefore, it is important to focus initially on modelling only what

is currently available to be monitored.

3

Consideration of the trade-off between investment of situation

modelling/determination and the effects of situation sensitive adoption.

 Intuitively, if we could model as much situation factors in as much details, the

accuracy of situation will be higher. However, this comes often with a high

cost. On the one hand, more time and efforts are needed on situation modelling,

and on the other hand, more computing recourses are necessary to handle the

situation, which will bring deficiency to the adoption process. Therefore, a

balance should be kept on the complexity of modelled information.

For the situation modelling process, it is recommended to use the Protégé, since it is a

free open source platform, widely used in ontology development. It provides the

necessary functionality to implement all the requirements of the SAFIRE situation

model(s). Additionally, the platform fully supports the latest OWL 2 Web Ontology

Language and RDF specifications from the World Wide Web Consortium, which are

being used within the situation determination part of the SD module. Its desktop

application is a powerful tool since its interface can be customised to the specific needs.

Figure 19 shows an example of the SAFIRE generic situation model visualised in

Protégé.

Figure 19: SAFIRE Generic Situation Model Created and Visualised in Protégé

D5.6 Integrated Methodology

Page 36 Version 1.0 25 October 2019

Confidentiality: Public Distribution

4.2 METHODOLOGY FOR THE CUSTOMISATION OF THE SITUATION MONITORING

SERVICE

4.2.1 Overview

The monitoring services provide an implicit, passive system to capture the input data

that will be used for situational awareness of the SAFIRE solution. It allows for

different sources of data to connect, such as file systems, web-service interfaces

provided by external systems (like such as .NET based applications) or kafka messaging

systems (like those developed for the Data Ingestion and Predictive Analytics modules).

The following figure describes the process the Situation Monitoring component uses

internally, from the gathering of the data from external sources, through the processing

and the persistence of the structured data for further use.

 Figure 20: Monitoring Process

Within the monitoring process, the following parts can be identified:

 System Monitor: defines how the data from external sources will be ingested to

the monitoring components and receives the incoming data.

 Monitoring Data Model: defines the structure of the monitoring data should

have in order to be persisted and used from the determination component.

 Parser: prepares (structures, transforms, etc.) the incoming data for use within the

monitoring component.

 Analyser: performs the structuring of the data based on the monitoring data

model and forwards the result for persistence.

 Monitoring Repository: storage where the structured monitored data are being

persisted for further use.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 37

Confidentiality: Public Distribution

4.2.2 Guidelines

In order to implement the situation monitoring component, and to configure it for

supporting different business cases and scenarios, the following steps can be followed:

1. Identify the requirements for monitoring data. Experts on the SAFIRE

solution and the industry, based on the situation model which defines the needs

for situational awareness, should initially define which data scope the monitoring

part will observe. These experts will take the results of the workshop for the

specification of the situational awareness requirements as an input for this task.

2. Define the monitoring data model. Based on the analysis of the previous step

and the selected situation model, the monitoring data model should be created to

cover the needs of the respective use case scenario. This includes the extension or

adjustment of the following classes in the monitoring part of the module:

 IMonitoringDataModel: Interface defining the data model for the

monitored data. The monitoring data model will be created by the analyser

and persisted into the monitoring repository.

 IMonitoringData: Interface defining which methods have to be

implemented for a concrete implementation of the monitoring data.

For covering the particularities of the situational awareness respective

scenario, a concrete implementation of the IMonitoringData class should be

created. Such a class is the following:

3. Implement the application specific system monitors. The monitoring part has

several generic monitors that were implemented in the current prototype. Each of

the monitors is implemented as a software service. In order to cover the

particularities of the selected scenario, specific monitors should be implemented.

Examples of such implementations are the following:

 ThreadedMonitor: The ThreadedMonitor object is responsible for starting

and stopping all configured monitoring plugins (monitors). During run-time,

it holds a list of all defined monitors and manages their states.

 FileSystemMonitor: This monitor checks files in a specific folder of a

filesystem for changes. For example, a production system stores state

changes and sensory information in periodic intervals in these files.

 WebServiceMonitor: This monitor retrieves data from a (production)

system that makes observable data available via a web-service.

 DatabaseMonitor: This monitor allows to observe a database for changes

in the schemata of the database.

 KafkaMonitor: This monitor allows to observe topics in a kafka cluster. In

SAFIRE these topics are primarily the ones published by the Data-Ingestion

Modules.

D5.6 Integrated Methodology

Page 38 Version 1.0 25 October 2019

Confidentiality: Public Distribution

4. Implement the necessary monitoring parsers. The following generic parser is

implemented:

 IndexingParser: This is an abstract implementation of a monitoring parser.

The corresponding analyser for each parser is created during initialisation.

The IndexingParser holds a reference to the corresponding analyser (i.e.

IndexingAnalyser, which is executed after successful parsing of the data to

be monitored.

For covering the respective needs of the scenario to monitor, specific parsers

should be developed. The following exemplary implementations of parsers can be

used or adjusted to specific needs:

 FileParser: Abstract parser implementation that deals with handling files

from a file system. The parsing process itself has to be implemented by each

concrete implementation.

 DatabaseParser: Abstract parser implementation that deals with data from a

database. The parsing process itself has to be implemented by each concrete

implementation.

 WebServiceParser: Abstract parser implementation that deals with handling

data from a web service. The parsing process itself has to be implemented

by each concrete implementation.

 ELECParser: Concrete implementation of an application specific parser.

This parser is specialised to parse the data coming from the ELECTROLUX

factory, machines, products and users.

 ONAcloudParser: Concrete implementation of an application specific

parser. This parser is used to parse the data input for the ONA business

cases scenarios.

 ProntoParser: Concrete implementation of an application specific parser.

This parser is dedicated to parse the data coming from the proNTo platform

used in the OAS business case.

5. Implement the monitoring analysers. The following generic analyser is

implemented:

 IndexingAnalyser: This is an abstract implementation of a monitoring

analyser.

The following exemplary implementations of specialised analysers to cover the

particularities of the situational awareness scenario could be used or adjusted:

 FileAnalyser: Abstract analyser implementation that deals with analysing

files from a file system. The analysing process itself has to be implemented

by each concrete implementation.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 39

Confidentiality: Public Distribution

 DatabaseAnalyser: Abstract analyser implementation that deals with

analysing data from a database. The analysing process itself has to be

implemented by each concrete implementation.

 WebServiceAnalyser: Abstract analyser implementation that deals with

analysing data from a web service. The analysing process itself has to be

implemented by each concrete implementation.

 ELECAnalyser: Concrete implementation of an application specific

analyser. This analyser is specialised to structure the data to the selected

structure for the ELECTROLUX factory, machine, product and user.

 ONAcloudAnalyser: Concrete implementation of an application specific

analyser. This analyser is used to structure the data for the ONA business

cases scenarios.

 ProntoAnalyser: Concrete implementation of an application specific

analyser. This analyser is dedicated to structure the data to fit the

requirements of the OAS business case.

6. Configure the monitoring sources paths. In order to define the particularities of

the monitoring part, as for example which of the implemented parsers and

analysers will be used, a configuration file should be adjusted. The .xml file is

named “monitoring-config.xml” and it is placed in the “resources” folder of the

monitoring part.

<?xml version="1.0" encoding="utf-8"?>

<config xmlns="http://www.atb-bremen.de"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.atb-bremen.de monitoring-config.xsd">

 <indexes>

 <index id="index-dummy" location="indexes/dummy"></index>

 <index id="index-diversity" location="indexes/diversity"></index>

 </indexes>

 <datasources>

 <datasource id="datasource-dummy" type="file"

monitor="de.atb.context.monitoring.monitors.file.FilePairSystemMonitor"

uri="target/test-classes/filepairmonitor" options="extensionOne=1&extensionTwo=2"

class="de.atb.context.monitoring.config.models.datasources.FilePairSystemDataSource"

/>

 </datasources>

 <interpreters>

 <interpreter id="interpreter-dummy">

 <configuration type="*"

parser="de.atb.context.monitoring.parser.file.DummyFilePairParser"

analyser="de.atb.context.monitoring.analyser.file.DummyFilePairAnalyser" />

 </interpreter>

 </interpreters>

 <monitors>

D5.6 Integrated Methodology

Page 40 Version 1.0 25 October 2019

Confidentiality: Public Distribution

 <monitor id="monitor-dummy" datasource="datasource-dummy"

interpreter="interpreter-dummy" index="index-dummy" />

 </monitors>

</config>

6.1 Configure the monitoring services. The details of where the monitoring

services will run or where the repository for the monitored data should be, should

be defined in an xml configuration file. The file is named “services-config.xml”

and it is placed in the “resources” folder of the monitoring part. The following

example can be used as reference:

<?xml version="1.0" encoding="utf-8"?>

<config xmlns="http://www.atb-bremen.de" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <services>

 <service id="AmIMonitoring">

 <host>localhost</host>

 <location>http://localhost:19001</location>

 <name>AmIMonitoringService</name>

 <server>de.atb.context.services.AmIMonitoringService</server>

 <proxy>de.atb.context.services.IAmIMonitoringService</proxy>

 </service>

 <service id="AmI-repository">

 <host>localhost</host>

 <location>http://localhost:19002</location>

 <name>AmIMonitoringDataRepositoryService</name>

 <server>de.atb.context.services.AmIMonitoringDataRepositoryService</server>

 <proxy>de.atb.context.services.IAmIMonitoringDataRepositoryService</proxy>

 </service>

 </services>

</config>

6.2 Administrate the situation monitoring service. To configure, deploy and

administrate the situation monitoring service, an administrative user interface for

situational awareness is used, and is described in detail in appendix 4.

4.2.3 Algorithms, technologies and Tools

The Situation Monitoring services serves the purpose of capturing information from

sensors / systems. This information will be obtained from Kafka topics, a file system or

a Web-Service interface provided by external systems. For example, a system / sensor

stores current sensor information in files on a file system. This information is gathered

from the threaded monitoring services. Another possibility: data interactions made with

web-services can be monitored through the specific services that are able to poll for

updates or receive trigger events upon data extraction will occur. Furthermore, the

monitoring can gather data pushed into a kafka topic.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 41

Confidentiality: Public Distribution

4.2.3.1 Monitoring Framework

The Situation Monitoring services are included into a modular container. It provides and

is extendable for several different monitoring services and offers the ability to configure

these for external legacy systems or to be called by web-service request and inject in

external sources. It is the interface for all monitoring processes and comprehends the

whole monitoring activity chain (see Figure 21).

Figure 21: Monitoring Service Platform Process

Therefore, the main functionality of the Situation Monitoring component is:

 To orchestrate and direct requested and configured monitoring services to the

depending system

 To operate as interface for all Situation Monitoring Services to send their captured

data

 To collect, parse and analyse the gathered information and comprehend and

correlate the content and environmental properties

 To construct the respective Situation Monitoring Data and send them to the

Situation Determination component

To achieve this functionality the component combines a set of monitoring objects:

 The Situation Monitoring Services, encompasses the possibility to capture general

and specific information, and

Existing Device-centric Infrastructure

Content
Parsing

Monitoring
of Devices /

Systems

Monitoring
Repository

Parser
Identification

Content
Analysing

Data Access
Layer

Data
Ingestion

Construct
Monitoring Data

D5.6 Integrated Methodology

Page 42 Version 1.0 25 October 2019

Confidentiality: Public Distribution

 The Parser and Analyser, accessing different information formats such as CSV

Files, XML documents etc. to collect content and meta-information.

The Early Prototype includes generalised Situation Monitoring Services, which are

described in the following chapter.

4.2.3.2 Monitoring Service for legacy systems

The process of monitoring different forms of legacy systems is part of the main

Monitoring Service framework. It relies on the Data Access Layer and implemented

system interfaces, which for the Early Prototype can either be a kafka topic, a file or

Web-Service (SOAP) based. However, the data gathered is independent from specific

legacy system peculiarities.

The monitoring of external systems is separated into two parts:

 A permanent loop of monitoring of external resources for changes which indicate

content change (i.e. new sensory information). For file-based systems this

includes monitoring of files and directories and for web-services (SOAP)-based

systems this relies on polling the provided interfaces and comparing freshly

retrieved data with previously gathered one. For the kafka topic it gets notified

(publish-subscribe) if a new topic is available for the monitoring.

 The gathering of all possible information from an external system, besides the

content itself. Other possible information refers to environmental properties.

For the permanent loop of watching for changes, the monitoring service requires to look

for specialties that offer information about a revision or gives away a date of creation

signalling changes. Those so-called “Environment properties” are system specific

attributes that define the situation of a system (e.g. the path of a file, the timestamp of a

last access of a web-service interface).

4.3 METHODOLOGY FOR THE CUSTOMISATION OF THE SITUATION

DETERMINATION SERVICE

4.3.1 Overview

The Situation Determination is the main component responsible for the identification of

any situational changes in the observed environment of the SAFIRE solution. Based on

the monitoring of the environment, including external systems, devices and users, the

on-going situation for these systems is being identified. This situation will then be used

for determination of more specific situational knowledge, using reasoning techniques.

As shown in Figure 22, the Situation Determination identifies situations from the

standardised monitoring data provided by the Monitoring Service (Situation

Identification), manipulates it through different types of reasoning techniques (Situation

Reasoning), and provides the refined situations (the current on-going and a list of

similar ones) through a service (Situation Provisioning) to other modules (using kafka

messages).

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 43

Confidentiality: Public Distribution

 Figure 22: Determination Process

The determination service is based on the Situation Model (semantic model) for an

integrated representation of knowledge about products, machines, manufacturing

processes and usage information, and provides a method for computing situation

similarity measures in order to detect similarities.

The methodology to develop, configure and validate the determination process, which

includes the following parts:

 Situation Identification: is used to identify possible meaningful situation

information among the monitored data, to map information on the given situation

model or query situation related information,

 Situation Reasoning: is used to perform further analysis of the identified

situation in order to extract more accurate and detailed situations.

 Situation Provisioning: provides the current situation after comparing it with

previous ones in order to identify similarities and assist in statistical reasoning.

 Situation Repository: storage of the identified situations, both current and

historical.

Each of the above mentioned steps is being described in the following section.

4.3.2 Guidelines

For the customisation of the Situation Determination part, and its configuration to cover

the particular needs of a factory or specific use case scenario the following steps can be

followed:

1. Add the situation model .owl file in the resources folder of the module. The

Situation Determination module is based on the information defined in the

situation model in order to identify accurately the necessary information within

the monitoring data. Therefore, an important step to the configuration of the

D5.6 Integrated Methodology

Page 44 Version 1.0 25 October 2019

Confidentiality: Public Distribution

module is the situation model input. The situation model should be included in an

.owl file under the name “safire-context.owl”. It should be saved in the resources

folder of the module so that it can be used during the situation identification

process.

2. Set up the situation repository. The situation determination part of the module,

stores the extracted situations into its own repository.

3. Configure the determination services. The details of where the determination

service and the respective repository is running can be defined in an .xml file. The

file is named “services-config.xml” and it is placed in the “resources” folder of

the determination part. The following shows an example of Situation

Determination service configuration:

<?xml version="1.0" encoding="utf-8"?>

<config xmlns="http://www.atb-bremen.de" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <services>

 <service id="ContextExtractionService">

 <host>localhost</host>

 <location>http://localhost:19001</location>

 <name>ContextExtractionService</name>

 <server>de.atb.context.services.ContextExtractionService</server>

 <proxy>de.atb.context.services.IContextExtractionService</proxy>

 </service>

 <service id="ContextRepositoryService">

 <host>localhost</host>

 <location>http://localhost:19002</location>

 <name>ContextRepositoryService</name>

 <server>de.atb.context.services.ContextRepositoryService</server>

 <proxy>de.atb.context.services.IContextRepositoryService</proxy>

 </service>

 </services>

</config>

4. Implement the situation identifiers. The situation identification process

searches through the structured monitoring data for information which reflect to

the requested situation. The monitoring data do not contain directly situational

information that reflect to the situation model. Therefore, the situation identifiers

are wrappers, used to gather all the situation relevant information among the

monitored data and map them to the situation model (ontology) format. The

identifiers can be adjusted using the following classes:

 IContextIdentifier: The interface that defines a situation identifier. In each

concrete implementation of a situation identifier the usage of a reasoner can

be defined. In all current implementations Pellet is/will be used as reasoner.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 45

Confidentiality: Public Distribution

 ContextContainer: This class is a wrapper object that holds an identified

situation during run-time.

For covering the particularities of the situational awareness respective

scenario, a concrete implementation of the IContextIdentifier class should

be created. Such a class is for example the following:

 MixerRefillingContextIdentifier: Concrete implementation of a

IContextIdentifier. The identified situation is constructed in this object.

5. Administrate the situation determination service. To configure, deploy and

administrate the situation determination service, a user interface for situational

awareness is used, and is described in detail in appendix 4.

4.3.3 Algorithms, technologies and Tools

The Situation Determination process is separated in two modules – Situation

Identification and Situation Reasoning. The Early Prototype implementation if these

two modules is explained in the following sections.

4.3.3.1 Situation Identification

The monitored data from the Situation Monitoring service will be sent to the Situation

Identification module. It will then be analysed and the situation will be identified, such

as what system/sensor is involved, what knowledge items are produced or used, time,

location, etc.

Since the monitored data is a list of RDF statements, the identification process is

implemented mainly through SPARQL queries and ontological mapping algorithms.

For example, assume that there are such RDF statements in the standardised monitoring

data:

D5.6 Integrated Methodology

Page 46 Version 1.0 25 October 2019

Confidentiality: Public Distribution

 ...

<rdf:Description rdf:about="#Mixer/28360136">

 <rdf:type rdf:resource=" http://safire-factories.org/bc-oas/Mixer"/>

 <oas:sensoricalMixerInformation rdf:nodeID="A0"/>

 <oas:name>MixerA1</oas:name>

</rdf:Description>

...

<rdf:Description rdf:about="#SensoricalMixerInformation/8440521">

 <rdf:type rdf:resource="http://safire-factories.org/bc-

oas/SensoricalMixerInformation"/>

 <oas:active>1</oas:active>

 <oas:processingTime>0.28</oas:processingTime>

 <oas:cycleNo>9</oas:cycleNo>

 <oas:componentTemperature>45.3</oas:componentTemperature>

 <oas:component>white</oas:component>

</rdf:Description>

...

<rdf:Description rdf:nodeID="A0">

 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"/>

 <rdf:_1 rdf:resource="#SensoricalMixerInformation/8440521"/>

 <rdf:_2 rdf:resource="#SensoricalMixerInformation/27187756"/>

 <rdf:_3 rdf:resource="#SensoricalMixerInformation/3403998"/>

 ...

</rdf:Description>

Code 1: Example abridged RDF Monitoring Data

This can be interpreted as: there is different sensory information for a valve, like the

pressure in the valve, the pressure of the component etc. Of course, all information

monitored by the Monitoring component is passed over to the Situation Identification

module.

By doing a SPARQL query on this data:

Select ?mixer ?mixerActive ?mixerCycle

where

{

 ?mixer rdf:type oas:Mixer.

 ?mixer oas:sensoricalMixerInformation ?mixerInfo.

 ?mixerInfo oas:active ?mixerActive.

 ?mixerInfo oas:cycleNo ?mixerCycle.

};

Code 2: Example of a SPARQL query

We can retrieve the instance URI and pressure of for example a mixer at a certain point

in time (mixer cycle no). Then based on the returned information the situation

identification module will match the results on the appropriate ontology classes and

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 47

Confidentiality: Public Distribution

create instances of a valve, of pressure sensors and sensory information, valve

synchronisation step, the valve synchronisation process etc. In a next step all the

required properties are handled and set up accordingly.

The identified situation will be used in Situation Reasoning and a more detailed

explanation is presented in the following sections.

4.3.3.2 Situation Reasoning

The purpose of Situation Reasoning is to generate more accurate situations from the

identified situation. This includes ontology reasoning, rule-based reasoning, as well as

statistic reasoning.

Ontology reasoning

Ontology reasoning is implemented through Jena Inference Engine and other external

libraries that provide reasoning functionality.

Figure 23: Subsumption via Reasoning

For example, in Figure 23, it can be seen that TemperatureSensor is a subclass of

SensoricalDevice, SensoricalDevice is a subclass of GenericDevice,

GenericDevice a subclass of Resource (and so on) and all these concepts are

subclasses of SituationModel. In order to tell that Millimetre is also a sub class of

SituationModel, one has to use at least a TransitiveReasoner (provided by

Jena) while creating / loading the ontology:

D5.6 Integrated Methodology

Page 48 Version 1.0 25 October 2019

Confidentiality: Public Distribution

TransitiveReasoner reasoner = new TransitiveReasoner();

InfModel infM = ModelFactory.createInfModel(reasoner, schemaModel, rawModel);

Code 3: Creating a TransitiveReasoner

Where the rawModel includes statements of an existing situation ontology instance (or

even the complete situation ontology), schemaModel is the SAFIRE ontology

definition, the infM is the reasoning result in form of another ontology model.

RDFS reasoning and OWL reasoning are also provided in Jena. In the early prototype,

transitive reasoning for exploring the situation hierarchy, which is required to calculate

situation similarity, will be used. For the full prototype more high-performance

reasoners like Pellet2 will be integrated in the final solution.

Rule based reasoning

Rule based reasoning is implemented through Jena Inference Engine:

Reasoner ruleReasoner = new GenericRuleReasoner(Rule.rulesFromURL(ruleURL));

InfModel infM = ModelFactory.createInfModel(ruleReasoner, rawModel);

Where the user defined rules are stored in the ruleURL. For example, by applying the

following rule to the identified situation:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix safire: <http://safire-factories.org/base.owl#> .

[rule1: (?a safire:hasDevicePart ?b)

 (?b rdf:type safire:Mixer)

 (?b safire:isObservedBy ?c)

 (?c rdf:type safire:PressureSensor)

 (?c safire:providesPressure ?d)

 (?d rdf:type safire:Bar)

 -> (?a rdf:type safire:MixingHead)

]

Code 4 – Example Rule for Rule-Based Situation Reasoning

Code 4 shows an example, which can be explained as “if a processing device has a

mixer attached to it, and this mixer is observed by pressure sensor which provides a

resource identified as pressure in Bar this processing device is of type MixingHead”.

2 http://clarkparsia.com/pellet/

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 49

Confidentiality: Public Distribution

Statistic reasoning

Statistic reasoning does not rely on strict logical rules but instead tries to correlate

information into possible relations, as suggested by the empirical data. In the early

prototype no statistical reasoning was implemented, but for the full prototype, it will be

further explored and elaborated how on-going (i.e. currently identified) situations can be

compared with historical (i.e. previously identified) situations.

For the full prototype, statistic reasoning to sort on-going situations based on a so-called

PCS (Possible Current Situation) possibility criteria will be implemented. PCS

possibility will be calculated based on the identified situation and the historical

situation.

PCS possibility is used to help set up current, most relevant situation. If there is no on-

going situation at all, a new current situation will be created for the system, and the

recently identified situation will be glued to it. Otherwise the situation with the highest

PCS possibility value will be used as the current relevant one.

4.3.3.3 Situation Provision

The purpose of Situation Provision is to provide the identified situations to other

modules or downstream services. In SAFIRE, the Situation Provision, will publish the

identified situations in the kafka cluster of the SAFIRE infrastructue, which means it is

acting as a kafka topic producer.

As data format for the topics, the situation provision is making use of the Metric API

(see D3.1 Methodology for dynamic and predictable Optimisation and Reconfiguration

Engine for a detailed description of the Metrics API and its usage).

D5.6 Integrated Methodology

Page 50 Version 1.0 25 October 2019

Confidentiality: Public Distribution

5. METHODOLOGY FOR OPTIMISATION

5.1 OVERVIEW

We describe in this section the main methodology followed in SAFIRE for the

optimisation of manufacturing processes. Firstly, we describe a powerful analytical

model that can be applied to evaluate the quality of a variety of process planning

approaches. We then describe the way such analytical models can be used as fitness

functions within SAFIRE‟s optimisation engine (OE), which follows an evolutionary

approach that enabled us to explore large multi-objective optimisation problems. We

provide details on the methodologies we developed to accelerate and increase

performance-predictability of the OE, by exploring large scale parallelism in a cloud

environment, and using techniques such as evolutionary islands. Finally, we describe

additional tools and methodologies we developed to facilitate the customisation and

development of fitness functions for different business cases, including semi-automatic

generation that also relies on the SAFIRE evolutionary infrastructure. With the provided

support, we could improve the fitness functions developed for the SAFIRE BC, and we

provide enough detail and tool support to enable the creation of fitness functions that

allow other BCs beyond SAFIRE to reuse the SAFIRE optimisation approach.

5.2 ANALYTICAL PLATFORM MODELS USED IN SAFIRE

In this section, Interval Algebra, the algebraic model that is used in SAFIRE to

explicitly describe objective functions is presented. The rationale behind selecting the

Interval Algebra rather than Max-Plus algebra, both described in deliverable D3.1 (1), is

the complexity of the considered business cases that requiries using specific features in

the Interval Algebra, absent in the Max-Plus Algebra, for example mutual exclusiveness

of resources or task affinities. An example of applying Max-Plus algebra to a simpler

use case has been described in paper (2).

5.2.1 Interval algebra

One of the optimisation problems that are required to be solved by the SAFIRE optimi-

sation engine is the batch scheduling problem. In the project, this problem is exempli-

fied with the use cases from one of the project industrial partner, OAS. As described

later in SAFIRE, we propose to use Interval Algebra (IA) as an analytical model that

can describe a related fitness function. As IA was invented in the course of the

DreamCloud project (funded under FP7-ICT, project ID: 611411) for task scheduling in

real-time computer-based systems, some extensions of it would be required to cover

some characteristics of batch scheduling problems. For the sake of self-consistency of

this document, the most important features of IA are described in this section, followed

by the required new features.

In the SAFIRE project, a manufacturing process is viewed as a set of tasks, a taskset Γ =

{τ1,τ2,τ3,...}. The tasks appearing exactly once during a manufacturing are often referred

to as singletons and are composed of a single job. A periodic or sporadic task can be

treated as an infinite series of jobs that are released periodically or less often than the

provided inter-release time, respectively. The j-th occurrence (j-th job) of a periodic or

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 51

Confidentiality: Public Distribution

sporadic task τi is denoted with τi,j. Tasks are mapped to plant resources, such as con-

veyors or machines using a selected scheduler.

The proposed IA can be used for the analysis of different resource composition alterna-

tives. It is possible to check influence on temporal characteristics (OEE, makespan,

slack, etc.) and estimate the total energy dissipated by the modelled solution while pro-

cessing the provided taskset. To evaluate plant characteristics with IA, system descrip-

tion is to be provided including plant architectures (machines, storage units etc., togeth-

er with the possible connections between them), different scheduling policies (pre-

emptive and non-pre-emptive), or different priorities of tasks.

Let us consider a simple example. A given manufacturing process is composed of three

singleton tasks: τ1, τ2 and τ3, to be processed with one of the two available machines of

the same type with the first-in-first-out (FIFO) scheduling. Each of the tasks can be rep-

resented by an interval that denotes the time it is processed using one of the machines:

τ1 = [0,30), τ2 = [0,45), τ3 = [0,20) (assuming in this example that τ1, τ2, τ3 are all inde-

pendent and ready to run at time t = 0). By using simple interval algebra operations, a

resource allocation heuristic can estimate the makespan R of the three tasks under dif-

ferent allocation schemes (e.g. Rτ1 = 30, Rτ2 = 45 and Rτ3 = 50 if τ1 and τ3 are allocated, in

that order, to one of the machines and τ2 is allocated to another), and thus can dynami-

cally decide whether it is likely to meet the temporal constraints when using a given al-

location. While trivial, such example can be made arbitrarily complex by allowing dif-

ferent resource scheduling disciplines, a larger number of tasks and machines. For IA,

however, the analysis of the makespan under a specific allocation would still involve

the application of the same interval manipulation rules.

Formally, an algebra is a definition of symbols and the rules for manipulating those

symbols. IA therefore establishes rules for the manipulation of intervals. IA defines dif-

ferent types of intervals, which represent the amount of time a particular manufacturing

process requires from a notional plant resource. It also defines rules for manipulations

of such intervals: what happens when an interval is allocated to a specific type of re-

source, what if two intervals are allocated to the same resource, etc. Two basic algebraic

operations are needed: time displacement and partition. Time displacement changes the

endpoints of an interval by an arbitrary value t, and denotes that the application compo-

nent had to wait for its allocated resource (i.e. its starting and ending times were moved

t time units to the future). Partition simply breaks one interval in two, and denotes that

an application component was pre-empted from a resource (and the second interval pro-

duced by the partition is likely to be time-displaced). All other interval-algebraic opera-

tions of IA, which can represent an arbitrarily large set of allocation and scheduling

mechanisms, can be expressed as compositions of those two. By applying those opera-

tions, it is possible to investigate the impact of different resource allocation and sched-

uling mechanisms on the endpoints of the intervals, which in turn denote the completion

times of each manufacturing processes.

5.2.1.1 Modelling application architecture

Using IA, application jobs are represented as intervals. For example, a singleton task

can be represented by the time interval it requires from a notional resource. It can be

denoted with the notation exemplified below:

D5.6 Integrated Methodology

Page 52 Version 1.0 25 October 2019

Confidentiality: Public Distribution

#τ1#0#40, (5.2.1.1)

where the first element of the tuple is a unique job identifier, the second is a non-

negative real number representing the release time of the job and the third is a positive

real number representing the load of the job, i.e. the actual length of the time interval. In

the example above, job τ1 is released at time 0 and requires 40-time units of a resource.

The same concept can also be represented using the mathematical notation for a left-

closed right-open bounded interval [0,40).

Such interval-based representation of a job is sufficient to express a singleton, and by

using a set of intervals, independent jobs can be also represented. To denote a depend-

ency between two tasks τ1 and τ2, the notation can be extended to include a job identifier

instead of the release time of a job:

#τ2#τ1#50 (5.2.1.2)

This notation is capable of denoting single dependency jobs, and conveys that the start-

point of the interval τ2 depends on interval τ1. Multiple dependencies can also be speci-

fied as a dependency set, and thus multi-dependency jobs can be covered:

#τ3#{τ1,τ2}#260 (5.2.1.3)

This notation assumes that whenever an interval has dependencies, its start-point lies

exactly at the highest endpoint among all the intervals it depends on. In this example,

assuming that tasks τ1 and τ2 are defined as in formulas (5.2.1.1) and (5.2.1.2), this leads

to: τ1 = [0,40),τ2 = [40,90),τ3 = [90,350).

5.2.1.2 Modelling manufacturing process temporal behaviour

The intervals described in the previous subsection are single-appearance and have a

fixed release time, therefore express singleton tasks. A strictly periodic series of jobs

can be characterised by its release time, the period after which a new job is released, and

the time interval each job requires from a notional resource. We denote such job series

with the notation exemplified below, which is exactly the same as the notation of a sin-

gleton task followed by the period:

#τ4#0#40#100. (5.2.1.4)

Mathematically, it represents an infinite series of intervals, such as: τ4 = [0,40),

[100,140), [200,240),.... This extension is expressive enough to represent strictly period-

ic tasks.

The release time of sporadic tasks is not deterministic but has well defined bounds. In

case of aperiodic tasks, those bounds do not exist. To model those cases, we can repre-

sent release times with so-called aleatory variables. Those variables are associated with

probability distributions that can constrain assumed values.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 53

Confidentiality: Public Distribution

5.2.1.3 Modelling resourcing constraints

A resource can be represented by an algebraic operation over all the jobs mapped onto

it, each represented by its respective interval. The algebraic operation determines how

the resource is shared between the jobs mapped to it, and how the sharing affects their

timings. We denote a resource with the notation exemplified below:

+π1(#τ1#0#40), (5.2.1.5)

where the algebraic operation π1 is applied to the set of intervals surrounded by brackets

(only τ1 in the example above). The example below shows the same resource, but this

time with two distinct jobs mapped to it:

+π1(#τ1#0#40,#τ2#0#50) = + π1(#τ1&40,#τ2&90) = + π1([0,90)) (5.2.1.6)

In this example, we introduce two different ways to evaluate the operator π1 (which we

can intuitively understand as a resource serving jobs under a FIFO schedule). The first

evaluation of the operator preserves the identities of the mapped jobs, and it indicates

the completion times of each one of them after the symbol ”&”. We will refer to this

type of evaluation as information-preserving (or simply preserving). The second way to

evaluate the operator is equivalent to the first, but it does not preserve any information

about the individual operands. It simply determines the busy period(s) of the resource

with one or more intervals. We refer to this type of evaluation as information-collapsing

(or simply collapsing).

A slightly different example is shown below, using the same jobs but this time mapped

onto resource π2 that uses a time division multiplexing (TDM) scheduler with a quantum

of 8-time units:

+π2(#τ1#0#40,#τ2#0#50) =+π2(#τ1&72,#τ2&90) = +π2([0,90)) (5.2.1.7)

It is worth noticing that only the intermediate expression (i.e. after the preserving evalu-

ation) differs, and the final result after the collapsing evaluation is the same. This is al-

ways the case if the operand denotes a work-preserving scheduler, when no resource is

idle as long as there are tasks ready to be processed on this resource.

The two following examples show jobs mapped onto a resource that is shared under a

priority-pre-emptive scheduler, assigning priorities in the same order the jobs are passed

to the operator (higher to lower):

+π3(#τ3#15#40,#τ4#10#50,#τ5#0#50) = + π3(#τ3&55,#τ4&100,#τ5&140) =

+ Π3([0,140))

(5.2.1.8)

+π4(#τ6#10#4,#τ7#0#18,#τ8#26#5,#τ9#24#8) =

+ π4(#τ6&14,#τ7&22,#τ8&31,#τ9&37) = + π4([0,22),[24,37))

(5.2.1.9)

D5.6 Integrated Methodology

Page 54 Version 1.0 25 October 2019

Confidentiality: Public Distribution

In both cases, the algebraic operations abstract away the specific interleaving patterns of

the processing of every job. Each of the evaluation types focuses solely on, respectively,

the finish times of each job or the idleness of the resource. For example, formula

(5.2.1.9) represents the following: task τ7 starts to be processed at time zero, but after

10-time units it is pre-empted by task τ6 which runs to completion for 10 time units; then

τ7 resumes and runs for its remaining processing time until time equals 22 units; re-

source π4 becomes idle until task τ9 is released at 24 time units, which in turn executes

until time equals 37 units.

Just like single appearance jobs, periodic jobs can be mapped to resources:

+π1(#τ1#0#40#100,#τ2#0#50) =

+π1(#τ1&40,#τ2&90,#τ1#100#40#100) =

+π1([0,90),#τ1#100#40#100)

(5.2.1.10)

It is important to notice that a periodic job series always remains as a distinct interval in

the result of both preserving and collapsing evaluations of an operator. This reflects the

infinite nature of the series.

One of crucial properties of each task is its affinity, which means that it can be pro-

cessed only on the designated resources. The task that can be executed on any resource

available in a system is referred to as untyped task. If a task can be executed on a single

type of resources only, it is a single-typed task. A multi-typed task can be executed on a

few (enumerated) resource types, possibly with different processing time. In all the ear-

lier examples, untyped tasks have been presented only. To describe a single-typed or

multi-typed task, the notation should support the definition of different types of re-

sources and different types of resource affinity. This can be expressed as follows, where

each scalar in pointy brackets denotes a different type and the absence of type con-

straints implies untyped jobs or resources (as in examples above):

+π1 < 2 > (#τ10 < 2 > #0#15, #τ11 < 2,3,8 > #0#20,#τ12#0#14) (5.2.1.11)

By allowing the definition of resource types and resource requirements, it is also possi-

ble to present transport jobs between two machines (e.g. using a conveyor) by model-

ling the job as two fully dependent intervals with distinct resource requirements, one for

processing and one for transporting (i.e. the job can only be connected over resource 2

once it has finished being processed by resource 1):

#τ13 < 1 > #0#14

#τ14 < 2 > #τ13#340
(5.2.1.12)

5.2.1.4 Modelling taskset load characterisation

The representation of load as the interval length, denoted by a positive real number, is

already capable of representing a fixed load.

To represent a typed fixed load, we allow the specification of different interval lengths

for different resource types using a similar notation as the one introduced earlier:

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 55

Confidentiality: Public Distribution

#τ15 < 2,4,6 > #0# < 10,20,20 > (5.2.1.13)

To represent a probabilistic load or typed probabilistic load, we have to rely again on

aleatory variables to represent the load. This can be done for both typed and untyped

jobs.

5.2.1.5 IA extensions in SAFIRE

The optimisation engine in SAFIRE aims to be capable of solving batch scheduling

problems with different process topology, including both single and multiple stages. In

the latter, multiproduct (aka flow shop) topology should be covered. According to (3),

when using this topology, products can be processed on a range of alternative resources

using different routes and in any batch size. This implies that between certain resources

additional relations have to be defined, denoting their affinity or anti-affinity. Another

requirement is related to changeovers which can be sequence-dependent. It means that a

new feature of sequence-dependent setup should be introduced. Another required fea-

ture stems from the material transfer requirements, as in a plant it is possible that certain

tasks have to be executed immediately one after another. As a result, immediate prece-

dence relationship is to be added to IA, which originally allowed only general prece-

dence relationships. Finally, inventory storage policies should be possible to be im-

posed. To fulfil this requirement, certain tags should be associable with tasks that would

inform about the produced commodities and their amount. The new features added to

the original IA in order to satisfy all these requirements are described below.

As OE in SAFIRE can be related to the optimisation of batch scheduling problems,

some extension to the IA described earlier has to be introduced. In batch scheduling,

tasks belonging to a manufacturing job are scheduled to the resources present in a cer-

tain plant. A manufacturing job is then defined as a set of dependent tasks (i.e., task in

an immediate or general precedence relationship, explained below) that have to be pro-

cessed in order to produce a certain amount of certain commodity. All tasks belonging

to a single manufacturing job correspond to a recipe describing a certain manufacturing

process. Consequently, there is no possibility of allocating only a subset of such tasks,

as the corresponding recipe would not be followed with such partial coverage. The tasks

belonging to a single manufacturing job should be then allocated according to their top-

ological order and in case any of its tasks cannot be allocated, the whole job should be

rejected.

IA should be capable to solve batch scheduling problems with different process topolo-

gy, including both single and multiple stages. In the latter, multiproduct (aka flow shop)

topology should be covered. According to (3), when using this topology, products can

be processed on a range of alternative resources using different routes and in any batch

size. This implies that between certain resources additional relations have to be defined,

denoting their affinity or anti-affinity. Another requirement is related to changeovers

which can be sequence-dependent. It means that a new feature of sequence-dependent

setup should be introduced. Another required feature stems from the material transfer

requirements, as in a plant it is possible that certain tasks have to be executed immedi-

ately one after another. As a result, immediate precedence relationship is to be added to

IA, which originally allowed only general precedence relationships. Finally, inventory

D5.6 Integrated Methodology

Page 56 Version 1.0 25 October 2019

Confidentiality: Public Distribution

storage policies should be possible to be imposed. To fulfil this requirement, certain

tags should be associable with tasks that would inform about the produced commodities

and their amount. The new features added to the original IA in order to satisfy all these

requirements are described below.

5.2.1.6 Mutual exclusiveness of resources

In plants, certain resources cannot be used at the same time. For example, in the consid-

ered OAS use case, an example of such relation can be two conveyors that transport raw

material from different silos to the same weighting scale. To prevent such resources to

be active at the same time, it is necessary to define a mutex relation between a pair of

resources R1 and R2. This binary relation holds if two R1 and R2 cannot be active at

the same time. The mutex relation is symmetric and transitive.

5.2.1.7 Different routes

Since in the multiproduct topology different routes between processing machines are

possible, but the equipment connectivity can be limited (partial), for example defined by

existing conveyors or pipes, an additional relation between resources than can be used

sequentially by tasks belonging to a single manufacturing job is necessary. Two rela-

tions are introduced:

 an affinity relation between resource R1 and resource R2 means that for two dif-

ferent tasks t1 and t2 belonging to the same manufacturing job and t1 < t2 with re-

spect to the topological order of the manufacturing job, where R1 is compatible

with task t1 and R2 is compatible with resource R2, if t1 is allocated to R1 then t2

can be allocated to R2.

 an anti-affinity relation between resource R1 and resource R2 means that for two

different tasks t1 and t2 belonging to the same manufacturing job and t1 < t2 with

respect to the topological order of the manufacturing job, where R1 is compatible

with task t1 and R2 is compatible with resource R2, if t1 is allocated to R1 then t2

cannot be allocated to R2.

5.2.1.8 Sequence-dependent setup

In batch scheduling problems, changeovers can be sequence (3). An example of such

changeover in the considered OAS use case is the situation when in the same resource

R1 (e.g. mixer) two tasks t1 and t2 are to be processed one after another, each belonging

to a different manufacturing job producing different commodity (e.g. different colour

paint). In such situation, an additional task t3 has to be processed by R1 between t1 and t2

(e.g. cleaning of the mixer). In the IA, a new function has to be introduced that would

take as parameters: a resource, the task currently processed by that resource, the task

subsequently to be processed by that resource and return the task that has to be pro-

cessed by R1 between t1 and t2. This function returns empty task (i.e. task of processing

time 0) if the sequence-dependent setup is not defined for given parameters.

5.2.1.9 Intra-task relations

In the original IA, only one relation between tasks was defined, namely a general prece-

dence relationship. In order to apply IA to SAFIRE problems, more intra-tasks relations

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 57

Confidentiality: Public Distribution

have to be considered. Allen in (4) introduced seven relations between intervals, as

summarised in Figure 24. One of these relations, y meets z, can be used to describe im-

mediate precedence relationships between tasks belonging to the same manufacturing

job. To increase the genericity of the fitness function evaluation block, all relations from

Allen‟s interval algebra are considered to be implemented in the prototype.

Figure 24: Binary relations in Allen’s interval algebra

5.2.1.10 Simultaneous allocation to several resources

It is possible that a task has to be processed by more than one resource at the same time.

It means that a simultaneous allocation to a few resources has to be added. The pro-

cessing time of the task by all these resources is equal.

5.3 MANUFACTURING PROCESS PLANNING AND SCHEDULING IN SAFIRE

Genetic algorithms have been selected to perform optimisation and reconfiguration in

the SAFIRE project. The motivation behind this choice has been presented in delivera-

ble D3.1 (1). Below, a brief problem formulation followed by a description of a general

genetic algorithm (with unbounded execution time) and its custom modification (with

bounded execution time) are provided.

5.3.1 Problem outline

The class of optimisation problems analysed in SAFIRE concerns mainly manufactur-

ing plants, comprised of k resources (e.g. machines), possibly organised in some pro-

duction lines. Some of these resources cannot be used simultaneously. In the considered

plant, m recipes for manufacturing commodities have to be allocated to resources and

D5.6 Integrated Methodology

Page 58 Version 1.0 25 October 2019

Confidentiality: Public Distribution

scheduled. The value gained by an end-user from the optimisation depends on both so-

lution quality and the time taken by the optimisation process itself. Since the optimisa-

tion process is performed in a cloud, the system architecture covers the problem domain

model and the cloud configuration.

The schedulers used in SAFIRE are assumed to be work-conserving, which means that

the scheduled resources cannot be idle when any recipe operation is ready to be sched-

uled at that resource. As a consequence of this assumption, there is no need to encode

time offsets between recipe operation release time and starting time, which reduces the

amount of information that needs to be provided to and from OE. Instead, each task's

starting time can be inferred from its dependencies and priority.

Controlled metrics include one metric of the nominal type for each recipe to be

allocated to resources. Each recipe is composed of one or more recipe operations. (Both

recipe and recipe operations are introduced more formally later in this section.) If all

recipe operations of a considered recipe are to be processed on the same resource, this

resource may be provided explicitly to the OE and thus the recipe can be allocated to a

concrete resource directly by OE. However, if recipe is to be processed by a set of

devices, OE allocates recipe to a so-called abstract resource, which can be viewed as a

set of resources unequivocally defining the underlying resources. Such recipe-resource

mapping is then forwarded to the Fitness Function module (FF). In this module, recipe

operations are identified for the recipes together with their resource affinity both

stemming from the recipe and being compatible with the abstract resource assigned by

OE. Recipe operations are allocated respectively. The difference of mapping between

OE and FF is visualised in Figure 25.

 Figure 25: Resource mapping at OE and FF levels

5.3.2 Optimisation engine input definition

As stated in Deliverable D3.2 (5), „Metrics API‟ has been developed in order to

describe configuration of a considered optimisation problem, following metrics division

into 3 categories: „Observable Metrics‟; „Control Metrics‟ and „Key Objective Metrics‟,

introduced in D1.2 (6). For self-sufficiency of this deliverable, the class diagram of

„Metrics API‟ is shown in Figure 26. The names shown in this diagram will be referred

to in the following subsections.

Recipe
Resource

(may be abstract)

RecipeOperation
Resource

(cannot be abstract)

is allocated to

is allocated to

OE level

FF level

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 59

Confidentiality: Public Distribution

Figure 26: Class diagram of Metrics API

5.3.3 System model

Each taskset Γ includes a set of independent recipes γj, j = 1, ..., n. Recipe γj produces uj

units of certain commodity δl, l = 1, ..., r. Each j-th recipe is comprised of one or more

recipe operations τj,k, k = 1, ..., κj. Recipe operation τj,k can be executed by one of

resources defined by a set Λj,k, including at least one resource πi Π, , i = 1, ..., m. A

recipe operation τj,k needs ti,j,k time units while executed on resource πi, consuming ei,j,k

units of energy and costing ci,j,k monetary units. A recipe operation τj,k has priority pj,k

N0, ordered decreasingly (i.e. lower values denote a higher importance).

The plant is supposed to satisfy order O, comprised of ol units of commodities δl. The

difference between the actually produced amount of commodity δl, θl and the ordered

amount of commodity δl , ol, is referred to as surplus and denoted with σl= θl - ol.

In the considered business case, a factory can produce r types of paints by executing a

multisubset (i.e. a combination with repetitions) of Γ. Each recipe γj includes only one

recipe operation τj,1.

5.3.4 Problem formulation

Given a set of recipes Γ, a set of resources Π and an order O, the problem is to assign

resources and priorities to a multisubset of recipe operations of recipes Γ so that the

total processing time (makespan) is minimised and the amount of each manufactured

commodity is higher or equal to the order, θl ol, but the surpluses of each commodity,

σl, are minimised.

5.3.5 Proposed approach

Let us consider recipe γj producing uj units of a certain commodity δl. To determine the

upperbound on the number of this recipe in the recipe multisubset to be allocated to

D5.6 Integrated Methodology

Page 60 Version 1.0 25 October 2019

Confidentiality: Public Distribution

resources, the lowest number of the recipe execution leading to producing sufficient

units of ordered commodity θl ol needs to be determined. This value can be

determined with equation

 ⌈

⌉.

(5.3.5.1)

Consequently, the cardinality of the multisubset is upperbounded with

 ∑

(5.3.5.2)

The solution to the problem can be then described with a chromosome of length 2η,

following the encoding proposed in Subsection 5.3.6.2. As the considered business case

includes several objectives aiming at minimising the makespan and the surplus of each

commodity, the multi-objective genetic algorithm techniques briefly described in

Subsection 5.3.9, needs to be applied.

5.3.6 Genetic representation of metrics

In genetic algorithms, candidate solutions are treated as individuals. During the

optimisation process, these individuals are evolved using a set of bio-inspired

operations, described briefly in Subsection 5.3.7. In this section, individuals' encodings

that facilitate the manufacturing process optimisation and reconfiguration are proposed.

5.3.6.1 Representation without Alternative Recipes

Since in the considered problems each metric assumes a value from a certain, prede-

fined domain, so-called value encoding of chromosomes needs to be applied. This en-

coding, in contrast to e.g. the traditional binary encoding, allows each gene to directly

correspond with a certain value of one variable of the optimisation problem and assume

values from the domain of that variable only.

In case without alternative recipes, there is one to one correspondence between orders

and recipes that has to be applied in order to manufacture a requested amount of com-

modities. The role of the OE module is to allocate the recipes to (possibly abstract) re-

sources and schedule them in time. The encoding has hence to embrace both the spatial

and temporal scheduling. Consequently, in the proposed encoding a chromosome con-

tains genes of two types, as shown in Figure 27. For n recipes that need to be scheduled,

the number of genes is thus equal to 2n. The odd n genes indicate the target resource for

n recipes, G2x+1 ∈ {π1, ... , πm}, whereas the remaining n genes specify the priorities of

the recipes, G2x ∈ , where x=1, ..., n. The priorities are ordered decreasingly, i.e. prior-

ity 0 is the highest. Such chromosome is then forwarded to FF module, where recipe

operations are mapped to resources according to the chromosome values. Recipe opera-

tions belonging to a certain recipe inherit its priority. The aim of introducing priorities

is to determine the processing orders of several recipe operations belonging to different

recipes, but being allocated to the same resource and thus to determine the temporal

scheduling. This type of encoding can be used for one of SAFIRE BC, specified by

ONA.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 61

Confidentiality: Public Distribution

R1 ξ₁ R2 ξ₂ ... Rn ξn
Figure 27: Genes in a chromosome for manufacturing processes without alternative recipes

5.3.6.2 Representation with alternative recipes

The difference between the situations described in this and the previous subsections lies

in the fact that in a representation with alternative recipes a certain multisubset (i.e. a

combination with repetitions) of recipe set Γ needs to be applied rather than all recipes

from this set in order to produce the required amount of Commodities. The maximal

number of recipes that needs to be considered is upperbounded to a certain value η, as

explained later in this document. At the encoding level, the novelty is that the odd η

genes can indicate either the target resource for η recipes or the rejection of it, G2x+1 ∈

{∅, π1, ... , πm}, where symbol ∅ is used for denoting the situation that certain Recipe

has not been scheduled for execution. This encoding is presented inFigure 28.

R1 ξ₁ R2 ξ₂ ... Rη ξη
Figure 28: Genes in a chromosome for manufacturing processes with alternative recipes

For simplicity, when alternative recipes are not allowed, symbols η and n are used

interchangeable in this document. This encoding is applicable to two SAFIRE BCs,

specified by business partners Electrolux and OAS.

5.3.7 Evolution-inspired operators

In a typical GA, selection, crossover and mutation operators are repetitively applied to a

set of individuals. A selection operator is used for choosing a set of individuals from the

current population to create individuals of the following population. The probability of

an individual to be selected is proportional to its fitting, which is measured with a

fitness function.

The individuals can be selected for recombination, and thus to generate further

generations, using fitness proportionate selection, also known as roulette wheel

selection. This operator associates fitness value of an x-th individual, ,

denoted with gx, with its probability of selection ρx according to equation

∑

. (5.3.7.1)

Another popular individual selection operator is deterministic binary tournament

selection. It involves performing several comparisons between two randomly selected

individuals. The winner of such comparison, i.e. the individual with the highest fitness

value, is selected to form future generations of individuals.

Crossover is a genetic operator that produces a new individual based on more than one

individuals from a current generation. The single-point crossover combines two

individuals, usually referred to as parents. A certain integer number ν between 1 and η is

randomly selected, where η is a number of genes in a chromosome. In the newly

generated individual, genes from 1 to ν are taken from the first parent individual,

whereas the remaining genes are taken from the second parent individual.

D5.6 Integrated Methodology

Page 62 Version 1.0 25 October 2019

Confidentiality: Public Distribution

The role of mutation operator is to maintain genetic diversity of the population by

performing relatively rare random changes of gene values. The mutation operator

depends on the applied encoding. As chromosome used in SAFIRE introduces two

value types: nominal for resources and integer for priority, two different mutation

operators are needed. For metrics of nominal type, mutation overwrites the current

value of the metric with another value from the domain of this metrics, selected

randomly. This modification changes the allocation of the selected recipe to another

compatible resource. In scenarios with alternative recipes, mutation can also overwrite a

resource with rejection or vice versa. The integer values represent recipe priorities (and

hence their relative ordering) and as such replace the value of the randomly selected

gene with a chosen uniform random value from an application-specific range.

5.3.8 Single-objective genetic algorithm with unbounded execution time

The applied genetic algorithm (GA) uses the operators introduced in Subsection 5.3.7

according to the pseudo-code given in Figure 29. In the algorithm, the following two

main steps can be singled out.

Step 1. Initial population generation (line 1). A predefined number of random recipe

mappings (including the possibility of each recipe rejection in case of alternative recipe

variant) together with their priorities are created.

Step 2. Creating a new population (lines 3-6). For each individual in the current popula-

tion, values of the key objectives (line 3) are computed. Then the next generation is cre-

ated by choosing the best individuals using a roulette-based selection. For each individ-

ual in the new generation, two parents are chosen with probabilities proportional to their

key objective values (line 4). The selected parent individuals are then combined using a

typical one-point crossover operation and mutated (lines 5-7). After these operations, a

new population is formed from the child individuals (line 6). Step 2 is repeated in a loop

as long as a termination condition is not fulfilled, which can be a maximal number of

generated populations or lack of a significant improvement in a number of subsequent

generations.

inputs:

 Resource set Π;

 Chromosome size 2η;

 Population size N;

outputs: Recipe mapping;

 Recipe priorities;

1 Generate an initial random population of N individuals with resource mappings (or recipe rejec-

tion) and priorities

2 while not termination condition do

3 Evaluate the key objective values of each individual;

4 Perform a fitness proportionate selection of parent individuals according to equation

(5.3.7.1);

5 Generate N child individuals using single-point crossover;

6 Perform mutation of the odd η genes (i.e. with resources/rejection) using values from

the domain of this metrics (and ∅ in case of alternative recipes);
7 Perform mutation of the even η genes (i.e. with priorities) overwriting value of the

randomly selected genes with a chosen uniform random value from an application-specific range;

8 Create a new population with the child individuals;

end

 Figure 29: Pseudo-code of single-objective genetic algorithm with unbounded execution time

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 63

Confidentiality: Public Distribution

5.3.9 Multi-objective genetic algorithm with unbounded execution time

SAFIRE BCs are characterised with multi-objective criteria. For example, not only re-

source utilisation needs to be maximised, but also the monetary cost of the applied

manufacturing process has to be minimised, and in the case of process manufacturing

with the presence of alternative recipes, the amount of manufactured commodities

should be as close to the ordered amounts as possible to minimise the storage costs. The

diversity of these criteria makes it difficult to convert such multi-objective optimisation

problem into a single-objective weighted sum of these objective values. Depending on

the current situation, some solutions with low weighted sum of objectives may not be

acceptable due to, e.g., insufficient energy budget or storage space for a certain com-

modity. An end-user should be then informed about a wide set of Pareto-optimal solu-

tions to select the final solution based on his/her knowledge of the problem. The set of

the alternative solution presented to the end-user should be then diverse and, favoura-

bly, distributed over the entire Pareto-optimal region. This expectation is in line with the

properties of the NSGA-II proposed by Deb et al in (7) as well as MOEA/D introduced

in (8). In deliverable D3.1, NSGA-II, outlined in Figure 30, was selected to be used in

SAFIRE.

inputs:

 Resource set Π;

 Population size N;

 Chromosome size 2η;

outputs:

 Recipe mapping;

 Recipe priorities;

1 Generate an initial random population of individuals with resource mappings (or recipe rejection)

and priorities

2 Evaluate the key objective values of each individual;

3 Assign ranks to the individuals;

4 Compute crowding distances for individuals of the same rank;

5 Sort the initial population based on rank non-domination criteria and crowding distance;

6 while not termination condition do

7 Select individuals using a deterministic binary tournament based on rank dominance and

crowding-distance value;

 8 Generate child individuals using single-point crossover;

9 Perform mutation of the odd η genes (i.e. with resources/rejection) using values from

the domain of this metrics (and ∅ in case of alternative recipes);
10 Perform mutation of the even η genes (i.e. with priorities) overwriting value of the

randomly selected genes with a chosen uniform random value from an application-specific range;

11 Evaluate the key objective values of each child individual;

12 Combine the child and the parent individuals;

13 Assign ranks to the individuals;

14 Compute crowding distances for individuals of the same rank;

15 Sort the combined individuals based on rank non-domination criteria and crowding-

distance;

16 Create a new population by adding each front subsequently until the population size ex-

ceeds N;

end

 Figure 30: Pseudo-code of multi-objective genetic algorithm with unbounded execution time

The multi-objective optimisation algorithm used in SAFIRE treats differently the initial

generation (lines 1-5) and the remaining generations (lines 6-16), as detailed below. The

algorithm performs the same crossover and mutation operators (lines 8-10) as the algo-

rithm for the single-objective optimisation problems, presented in Subsection 5.3.8. Be-

fore the (tournament) selection (line 7), the population is ranked based on the individu-

als' non-domination (line 3 and 13). The non-dominant solutions are assigned with rank

1, which favours these individual in the selection process. The solutions that are domi-

nated only by individuals of rank 1 are assigned with rank 2. The process of assigning

D5.6 Integrated Methodology

Page 64 Version 1.0 25 October 2019

Confidentiality: Public Distribution

the subsequent ranks is continued until all individuals are labelled. To spread the solu-

tions on the whole Pareto-optimal range, so-called crowded distance of each individual

is computed (line 4 and 14). The crowding-distance of an individual is based on the dis-

tance to the closest solution considering each objective separately and is computed for

individuals with each rank separately. Then both the rank and the crowding distance are

used as the sorting criteria (lines 5 and 15). The parent and child populations are merged

to provide elitism of the algorithm (line 12). The new population is created out of the

merged parent and child population by adding all the individuals with the same rank,

starting from rank 1, as long as the number of the individuals in the population being

generated plus the individuals of the subsequent rank is lower than the assumed popula-

tion size. In this situation, the number of the individuals added to the new population is

equal to the difference between the assumed population size and the number of the indi-

viduals already added to the new population, whereas the added individuals have the

highest crowding distance among the individuals with the considered rank (line 16).

The above described algorithm is suitable for multi-objective optimisation but not for

many-objective, that exist for example in the OAS BC. Hence, this algorithm has been

replaced with MOEA/D as a default algorithm, yet it is still available as an alternative in

the OE implementation. A pseudo-code of MOEA/D is presented in Figure 31. This al-

gorithm is explained in details in (9).

inputs:

 Resource set Π;

 Population size N;

 Chromosome size 2η;

 Neighbourhood size T;

 Uniform spread of N weight vectors λ
1
,λ

2
,...,λ

N
;

output:

 EP (a set of recipe instance allocation and scheduling solutions);

1 Set EP = ∅

2 Generate N random individuals with recipe instance allocations (or recipe instance

 rejection) and priorities as the initial population;

3 Evaluate the key objective values of each individual in the initial population;

4 Compute the Euclidean distances between any two weight vectors and find T closest weight

 vectors to each weight vector. For each i= 1,...,N, set B(i) = {i1,...,iT};

5 Initialise ideal points z = (z1,z2,...,zm) based on the objective values obtained

 from all individuals of the initial population;

6 while not termination condition do

7 for i=1,...,N do

8 Randomly select two neighbours from B(i), generate a new individual y

 via genetic operators proposed in Subsection 5.3.7 to

 the selected neighbours

9 Evaluate the key objective values of y;

10 For each j= 1,...,m, if zj> fj(y), then set zj = fj(y);

11 For each j∈B(i), set xj = y if g
te
(y|λj,z) ≤ g

te
(xj|λj,z);

12 Remove all individuals in EP that are dominated by y

 and add y to EP if no individuals dominate y.

13 end

14 Generate an elite individual employing the operator described

 in Subsection 5.3.7, evaluate its objectives’ values, and add it

 to the current population (if eligible), update z and EP.

15 end

16 return EP;

 Figure 31: Pseudo-code of multi-objective genetic algorithm with unbounded execution time

5.3.10 Genetic algorithm with bounded execution time

The execution time of both single- and multi-objective variants of GA can be bounded,

benefiting from the fact that in GA solutions are iteratively improved in subsequent

generations and there is no universally agreed criteria for stropping this iterative pro-

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 65

Confidentiality: Public Distribution

cess. Consequently, the optimisation can be finished after any iteration if timely execu-

tion is more important than possible further improvement of the solution quality.

In this section, each iteration of a GA is referred to as stage. In the i-th stage i ∈ {1, ...,

χ}, GA iterations are executed in parallel. Then the results are gathered and a stopping

condition is checked, based on the prediction of the total value improvement in the sub-

sequent stage, as illustrated in Figure 32.

We now describe the parameterisation of the case study considered in this document.

Each problem instance is parameterised as follows:

Input: manufacturing order O including: the plant given in the form of Activity-on-

Arrows graph, its value curve VC and arrival time AT, a potentially unbounded number

of slave processing nodes with (monetary) execution cost per time unit β and the num-

ber of individuals sent to each processing node.

Objective: Maximise the profit obtained from the manufacturing order.

The profit from the manufacturing order depends on the following factors:

 the fitness value returned by the GA,

 total processing time allocated to the optimisers, • cloud processing cost (per

container invocation).

GA-based
optimisation in

a serverless cloud
Optimisation

order
Prediction of

further revenue
improvement

negative

positive

Solution

time t

value V

AT D
0

ET

Vmax

VC (t)

VC (ET)

Z

Figure 32: Two major stages for genetic algorithm with bounded execution time

Figure 33: An example value curve of manufacturing order O

D5.6 Integrated Methodology

Page 66 Version 1.0 25 October 2019

Confidentiality: Public Distribution

5.3.10.1 Value curve

The value curve models the value of a process to its end-user as a function of time,

VC(t). It may assume various shapes, as discussed in Burkimsher (10). In SAFIRE, the

shape shown in Figure 28 has been chosen, which models generating the maximum val-

ue (e.g. as agreed in a contract) up to a certain deadline, after which a certain penalty is

imposed every time unit. This shape can be intuitively explained as up to the deadline,

the factory is occupied with other, previously configured manufacturing orders. So the

deadline is the earliest time the factory can start manufacturing new products. Thus,

there is no extra benefit in computing a new configuration well before the deadline, but

after the deadline the factory becomes idle until a new configuration is found. As during

this idle interval both relative overhead cost (ROC) and relative direct labour cost

(RDLC) are incurred proportional to the idle time, the value of the solution decreases

(11). Without any further modification of the proposed approach, this shape can be ex-

changed with any other non-increasing function if a curve better describing a certain

process is identified.

The chosen value curve assumes positive values starting from the time of the manufac-

turing order arrival, AT. As in this section we consider only a single order scenario,

without any loss of generality it may be assumed that AT = 0. The maximum value of

VC(t) is equal to Vmax and is observed from AT to a certain deadline, D > AT. Finally, VC(t)
assumes zero value from zero value time, Z > D. This shape of the value curve can be

described with the following equation

 () {

()

 (5.3.10.1)

5.3.10.2 Time and cost of stage execution

The optimisation is performed in stages until the applied stopping condition is satisfied.

The stage index is denoted with i, i ∈ N. During the i-th stage, the optimisation is per-

formed on si slave nodes. As these nodes are possible to be executed in the FaaS man-

ner, the monetary cost of using them is given by value β per second for each instance

(for example, in IBM Cloud it was $0.000017 per second of execution, per GB of

memory allocated on 21.01.2018). The maximal slave execution time in the i-th stage is

equal to ti. Thus the upperbound on cost of the execution of this stage for container ci is

given by:

 . (5.3.10.2)

The cumulative cost of computing the first i iterations, Ci, is equal to:

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 67

Confidentiality: Public Distribution

 ∑

 (5.3.10.3)

The predicted execution time of a stage, ̂ is determined via the extrapolation mecha-

nism described in Section 4.3. The manufacturing income yielded after the i-th iteration

is a difference between the income given by value curve VT at the moment of comple-

tion the i-th stage and the manufacturing cost, described by fitness value fi, i.e.

 () (5.3.10.4)

The profit generated after execution of the i-th stage is expressed as a difference be-

tween the income and the cumulative cost of the optimisation:

 (5.3.10.5)

5.3.10.3 Value prediction

The values of ti and fi can be predicted via extrapolation. The extrapolation method used

is the Bluirsch and Stoer algorithm (12), an extension of the well-known Neville inter-

polation/extrapolation algorithm to diagonal rational functions p(x)/q(x) for polynomi-

als p, q where p is of degree r (the length of the history vector from which to extrapo-

late) and the diagonal property requires that q is of degree r or r + 1, accordingly as r is

even. In many cases, this method can be analytically shown to provide superior accura-

cy to more traditional methods of polynomial extrapolation (12). For history lengths of

3 or less, such extrapolation is either undefined or else the result was empirically deter-

mined to be inaccurate: the predicted value of fi is then given by the best fitness found so

far and that of ti by the last (actual) processing time. After predicting the values ̂ , ̂ ,
they are used to predict the profit generated after the subsequent, (i + 1)-th stage as fol-

lows:

 ̂ (̂) ̂ ̂ (5.3.10.6)

This value can be used in a value-based stopping criterion, as described in the subsec-

tion below.

5.3.10.4 Stopping criteria

The stopping criteria are evaluated for a container at each stage i. We first apply an ab-

solute criterion (ensuring that the process will eventually terminate) by comparing the i

to a fixed upper bound on the number of stages (here, a value of 100 was empirically

chosen). The phenotypic convergence criterion compares the Standard Deviation sdi of

the GA population against a threshold value (here, 0.02), similarly to e.g. Yin et al (13).

The predicted profit criterion uses the method of diagonal rational extrapolation de-

scribed above to predict whether the execution of the subsequent stage will not decrease

the profit generated by the optimised process or not:

D5.6 Integrated Methodology

Page 68 Version 1.0 25 October 2019

Confidentiality: Public Distribution

 ̂ . (5.3.10.7)

The benefits of these stopping criteria have been evaluated in Deliverable D3.1 (1).

More details about this approach can be found in (2).

5.3.11 Parallel execution of genetic algorithm

5.3.11.1 Introduction

The typical parallelisation of GAs can be performed either at the fitness evaluation or

the population level (the island model), performed synchronously following the master-

slave architecture (14). In clouds, these approaches are beneficial only under certain

conditions, since the nodes are heterogeneous and connected with links characterised

with different latencies. The fitness-evaluation level parallelism is beneficial only for

expensive fitness functions (15), whereas the barrier applied in the island model is det-

rimental when the slave nodes are unreliable or have assorted response times (16). In

SAFIRE, the approaches similar to evolutionary Peer-to-Peer (P2P) computing have

been applied, described for example in (17). Following the principles of such approach-

es has been caused with the similarity between P2P and clouds with respect to the var-

ied response time and nodes‟ unreliability. In SAFIRE, a custom multi-objective GA

has been containerised using Docker to be deployed the containers in a Kubernetes3

cluster. The islands communicate each other using a NoSQL database.

5.3.11.2 Asynchronous Island-based GA with Migrations

In the island model of GA, the evolution is performed independently on a number of

subpopulations by GA instances named ”islands”. Aperiodically, the islands exchange

individuals, so-called”migrants”. The traditional island model follows a fully

synchronous master-slave architecture: the iterations on all islands begin at the same

time, triggered by the master node, and the iteration completion is synchronised with a

barrier. However, this approach can be modified to be fully distributed. In this section,

the asynchronous island-mode GA is provided in Figure 34 with several migration

strategies suggested.

Each island in the island mode of GA maintains its own subpopulation. It searches

towards the optimal solution within a given number of execution stages, where each

execution stage contains a fixed number of iterations. The optimisation engines run in

each island are executed asynchronously and do not communicate directly with each

other. Instead, they communicate using a light-weight database, pushing their selected

solutions at certain time points. At other time points, the solutions pushed by other

islands are popped and applied by an island to modify its current Pareto Front

approximation. Similar to (18), a complete migration is performed by a selection and a

replacement operator. The former selects the migrants to be pushed to a database and

possibly later imported (popped) by other islands, whereas the latter operator selects the

individuals in the Pareto Front approximation in an island that will be replaced by the

migrants popped from a database so that the same population size is maintained during

3 https://kubernetes.io/

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 69

Confidentiality: Public Distribution

the entire execution. In each island, the optimisation process stops after evolving a

predefined number of generations.

Four strategies for the selection operator have been implemented, as enumerated below:

 Generic selection does not perform the actual selection from the current Pareto

Front approximation but, instead, it randomly generates a new solution. This

strategy serves as the performance baseline for the remaining selection

operators.

 Random selection randomly selects a solution from the current Pareto Front

approximation.

 Best selection selects the best solution from the current Pareto Front

approximation. The solution quality is evaluated with the Generational Distance

(GD) performance indicator from (19), which quantifies the proximity of a given

solution to the ideal point.

 Diversity selection selects the solution with the highest diversity based on the

Crowding Distance (CD) value (20), which measures the average distance

between the solution and its two closest neighbours in the current Pareto Front

approximation.

To maintain a fixed size of each island‟s population, a certain replacement operator is

required to be applied during the migration. In SAFIRE, two replacement strategies

have been implemented:

 Random replacement removes a randomly selected solution in the population of

the target island.

 Worst replacement removes the worst solution in terms of the solution quality

based on a certain quality indicator.

With the above selection and replacement operators combined, we provide, in total,

eight migration strategies that can be pre-configured before the optimisation process.

inputs:

 I: number of iterations;

 P: number of individuals per island;

 S: number of stages;

 R: number of maximum stuck iterations in a row;

 M: number of solutions to migrate;

 CI: quality indicator

outputs: PF: a Pareto Front (PF) approximation;

1 PF = ∅, s = 0, c = 0;
2 create a GA island with P randomly generated solutions;

3 for s=1,...,S do

4 execute the GA islands for I iterations

5 add non-dominated solutions returned into PF

6 if CI value of PF obtained after stage s is not higher than that of stage (s-1) then

7 increment c;

8 if c==R then

9 c=0;

10 push the PF approximation to database;

11 end

D5.6 Integrated Methodology

Page 70 Version 1.0 25 October 2019

Confidentiality: Public Distribution

12 for m=1,...,M do

13 pull a PF approximation from a database;

14 migrate one solution from the remote set to the current population;

15 end

16 end

17 end

 Figure 34: Pseudo-code of asynchronous island-based genetic algorithm

The algorithm starts with P randomly generated solutions and then executes for S

stages, where each stage contains I iterations. After the GA island is executed in each

stage, an approximation of Pareto Front, PF is updated with new non-dominated

solutions (if there exist any). Then, a quality indicator

is applied to check the quality of

the current Pareto Front approximation and is compared to that of the approximation in

the previous execution stage. (The choice of quality indicator applied in the algorithm is

arbitrary, but it is assumed that a higher quality value indicates a higher quality of the

optimisation result.) If the quality is not improved continuously over the prior R

iterations (i.e., stuck in a local optimum), the Pareto Front approximation is pushed to

the database by overriding the previous approximation set of this island (if it exists). In

addition, after each execution stage that does not improve the Pareto Front

approximation, a pull operation is performed to get solutions from a Pareto Front

approximation from other islands, randomly selected, in the database (if there exits

any). Then migrations are performed to migrate M solutions from the selected front to

the current population based on a certain selection and replacement operators described

previously. Lastly, the PF approximation is pushed to the database as the final

optimisation result obtained by this GA island.

Figure 35: The architecture of the distributed island-based GA optimisation algorithm

5.3.11.3 Cloud Deployment

To deploy the algorithm presented in the previous subsection in a cloud environment,

the architecture depicted in Figure 36 has been applied. It contains the following

components:

 GA Data Service (data tier) is responsible for the data communication between

islands and storing the data in a persistent data storage.

 Data Cache is used to reduce the response time when the data service

reads/writes data from/to the persistent storage.

 GA Island executes the proposed GA; it can run either on a managed cluster or

on-premise.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 71

Confidentiality: Public Distribution

GA Data Service is highly available and automatically scale out/in according to the load

of the requests from GA islands. Additionally, the data cache is designed to use a

distributed key/value storage, such as a Redis4 cluster or Cassandra5, to support both

high availability and fast data exchange.

The micro-service architecture employed by the proposed solution decouples the

components so that the whole solution can be easily deployed to any distributed system.

This enables this solution to be provided as a cloud service by cloud providers and

requires the minimum possible maintains.

The deployment of the proposed architecture is based on the following assumptions:

 The number of islands that are running at the same time is up to hundreds.

 These islands issue requests to data-tier servers in a sporadic fashion, i.e., the

requests (both sending data to or requesting data from the data-tier) arrive with a

minimum interval, longer that the data-tier servers‟ response time.

 The amount of data exchange between the islands and the data-tier is relatively

low, up to a few MBs in a single push/pop operation.

In the past several years, Docker and Kubernetes are two popular techniques for

containerisation and container orchestration, respectively. Docker allows applications to

be shipped to any popular operating systems by creating a Docker image that is similar

to a virtual file system so that the application and its dependencies are encapsulated

together. A Docker image is instantiated as a running container by the underlying

execution-engine, such as Docker Engine or containterd. Kubernetes is a platform

running on a computer cluster, and provide container orchestration functionalities, such

as component abstraction (e.g., Pod, Service), DNS service, software-defined network,

resource allocation, load balancing etc. Additionally, Kubernetes also provides

Horizontal Pod Autoscaler (HPA) to dynamically auto-scale out/in the replicas of a

service component based on several metrics, for example, the CPU or memory

utilisation. The Cluster Autoscaler (CA) is used to dynamically adjust the number of

computing nodes in a Kubernetes cluster. Lastly, Kubernetes allows different plugins to

be installed. In the proposed deployment, we employ an ingress controller to allow

users/applications to communicate with the data-tier service outside of the cluster.

4 https://redis.io/

5 http://cassandra.apache.org/

D5.6 Integrated Methodology

Page 72 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Figure 36: Architecture of the cloud-base manufacturing planning and scheduling optimisation system

Docker and Kubernetes have been adopted by many providers such as Amazon AWS,

Microsoft Azure, Google Cloud, and IBM Cloud. This enables us to leverage the

managed Kubernetes services from these cloud providers, rather than installed locally

on premises. The Kubernetes HPA and CA enable autoscaling the components (such as

the data-tier service) in our system based on the load. By creating multiple instances of

service components, Kubernetes automatically handles the load balancing and re-starts a

faulty container once detected. This approach enables the proposed system to be highly

available during the operation.

Figure 36 depicts the deployment of the system described above. The core component is

GA Data Service, which is responsible for data exchange between islands and also

generating reports to users. It has a minimum number of instances by default to provide

service high availability and scaling out/in according to the load of the requests. The

islands can be implemented using any programming language, and communicate with

the GA Data Service via REST API from within the cluster or outside of the cluster

through the ingress. The GA Data Service stores all the data into an external NoSQL

cluster and uses a Redis cluster as a cache layer.

The benefits of the above sketched algorithm have been evaluated in (21).

5.3.12 Specification of fitness function using Factory Description Language

As written in deliverable D3.5 (1), the primary way of specifying fitness function of a

plant or smart thing is by describing its architecture, recipes available and tasks to be

processed using an XML-based factory modelling language named Factory Description

Language (FDL) and then using a software tool developed in the project to automatical-

ly generate the corresponding fitness function evaluator. Below, we discuss the most

important components of the FDL language.

Element objectives includes a set of elements named objective, where each objective

represents one objective of the optimisation problem. These objectives will be passed

directly into the multi-criteria optimisation engine as the optimisation objectives.

Below, the template for describing the objectives is presented.

<objectives>
<objective name=”objective1” />
<objective name=”objective2” />

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 73

Confidentiality: Public Distribution

<objective

name=”objective3” />

</objectives>

Element processingDevices includes a set of elements named processingDevice,

representing all processing resources (e.g. machines) in a plant. A processingDevice

element requires the name attribute. As a resource can operate in a number of various

operation modes, a processingDevice element includes the nested modes element, which

in turn includes a set of mode elements with the mandatory name argument. Each

resource has to include at least one mode.

<processingDevices>
<processingDevice name= ”device1”>

<modes>
<mode name= ”mode1”/>
<mode name= ”mode2”/>
<mode name= ”mode3”/>

</modes>
</processingDevice>

</processingDevices>

The productionLines element describes all production lines in a factory, introduced as

nested productionLine elements.

The name attribute in the productionLine element is mandatory. The productionLine

element includes a nested production-

LineProcessingDevices element, which in turn includes nested

productionLineProcessingDevice elements. Each productionLineProcessingDevice

start-tag includes two attributes, order and name. The former attribute values are

consecutive numbers that identify the resource order in a production line, whereas the

latter attribute values have to be equal to the resource names introduced in element

processingDevice. Each production line is linear and thus each possible split of

processing results in creating a new production line, from the production line source to

its sink. In the example below, the two production lines starts with the same resource

(Scale), but as two routes are possible starting from Converyor1 or Conveyor2, two

productionLine elements starting from the Scale resource are generated.

<productionLines>
<productionLine name=”ProductionLine1”>

<productionLineProcessingDevices>
<productionLineProcessingDevice order=”1” name=”device1”/>
<productionLineProcessingDevice order=”2” name=”device2”/>
<productionLineProcessingDevice order=”3” name=”device3”/>
</productionLineProcessingDevices>

</productionLines>

Element productionProcesses includes a set of production processes that need to be

scheduled in the considered plant. Each productionProcess element, nested in

productionProcesses, includes the mandatory name attribute and one or more

alternative sets of subprocesses leading to manufacturing a certain commodity. Each

subprocess element requires the name attribute and a set of nested

subprocessProcessingDevice elements. Unique names of subprocesses are required to

refer to them unambiguously from other elements, e.g. sequenceDependentSetup

(explained later). If more than one subprocessProcessingDevice elements are provided,

D5.6 Integrated Methodology

Page 74 Version 1.0 25 October 2019

Confidentiality: Public Distribution

they are treated as alternative ones and being capable of producing the same

commodity.

In the subprocessProcessingDevices element, all processing devices that have to be

allocated simultaneously to execute the given subprocess are listed with elements

subprocessProcessingDevice. The mandatory argument of this tag is

processingDeviceName, whose value shall be found in the processingDevice element

described earlier. Then subprocessProcessingDevicesMode elements follow with the

mandatory modeName attribute whose value shall be listed into the corresponding

processingDevice element, as described earlier. The subprocessProcessingDevicesMode

element includes at least one of the three elements: processingTime,

energyConsumption and monetaryCost. These three elements specify the corresponding

numeric costs of using the particular processing device in the particular mode and as

such can be later used to define a fitness function of a factory scheduling. The usage of

these elements is demonstrated in the following example.

<productionProcesses>
<productionProcess name=”production1”>

<subprocesses>
<subprocess name=”production1Task1”>

<subprocessProcessingDevices>
<subprocessProcessingDevice processingDeviceName=”device1”>

<subprocessProcessingDeviceMode modeName=”mode1”>
<processingTime>x1</processingTime>
<energyConsumption>y1</energyConsumption>
<monetaryCost>z1</monetaryCost>

</subprocessProcessingDeviceMode>
</subprocessProcessingDevice>
<subprocessProcessingDevice processingDeviceName =”device1”>

<subprocessProcessingDeviceMode modeName=”mode2”>
<processingTime>x2</processingTime>
<energyConsumption>y2</energyConsumption>
<monetaryCost>z2</monetaryCost>

</subprocessProcessingDeviceMode>
</subprocessProcessingDevice>

</subprocessProcessingDevices>
</subprocess>

</subprocesses>
</productionProcess>

</productionProcesses>

Another element that is mandatory in a productionProcess element, as long as that

element includes more than one subprocess element, is subprocessRelations, using

subprocessRelation to describe relations between subprocesses in the considered

productionProcess. Three arguments are mandatory: source and destination require a

proper name of subprocess introduced in the considered productionProcess, whereas

allensOperator requires any relation from the interval Allen‟s algebra that describes the

temporal relation between the source and the destination. The following allensOperator

values are possible: LT for source earlier than destination, S for source since destination,

F for finish destination, EQ for source equal to destination, O for source overlapping

destination, M for source meeting destination and D for source during destination.

Below, an FDL template for describing subprocess relations is presented.

<subprocessRelations>
<subprocessRelation source=”Task1” destination =”Task2” allensOperator=”M”/>
<subprocessRelation source=”Task2” destination =”Task3” allensOperator=”M”/>
<subprocessRelation source=”Task3” destination =”Task4” allensOperator=”M”/>

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 75

Confidentiality: Public Distribution

<subprocessRelation source=”Task4” destination =”Task5” allensOperator=”M”/>

</subprocessRelations>

Element sequenceDependentSetup determines extra costs when two certain

subprocesses, specified with attributes source and destination, are performed

subsequently using the same processing device, specified with attribute

processingDevice. This extra cost can refer to time, energy or monetary cost, so three

elements are provided: extraProcessingTime, extraEnergyConsumption and

extraMonetaryCost, as shown in the following example.

<sequenceDependentSetups>
<sequenceDependentSetup source=”commodity1Task1” destination=”commodity2Task1” processingDevice=”device1”>

<extraProcessingTime>x1</extraProcessingTime>
<extraEnergyConsumption>y1</extraEnergyConsumption>
<extraMonetaryCost>z1</extraMonetaryCost>

</sequenceDependentSetup>

</sequenceDependentSetups>

After specifying a scenario with FDL, the tool named Optimisation Engine Configurator (OEC) is used
(OEC) is used to generate both the configuration template and the fitness function evaluator in the

evaluator in the following way. Depending on the input factory parameter, OEC locates to the correct
to the correct XML factory modelling file and reads the corresponding optimisation parameters and
parameters and factory descriptions, which include optimisation objectives, factory resources with

resources with their availability, production processes with their subprocesses, subprocess relations
subprocess relations of subprocesses and dependent setups for production processes. This flow is

This flow is illustrated in

Figure 37. Examples of the FDL-based factory models are provided in deliverable D5.8

(22). More details regarding specifying fitness function using FDL can be found in (23).

FDL
description

Optimisation
Engine

Configurator

Fitmess
function evaluator

Configuration
template

D5.6 Integrated Methodology

Page 76 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Figure 37: Optimisation Engine Configurator use flow

5.3.13 Evolving fitness functions using genetic programming

During the course of the SAFIRE project, some problems with formulating appropriate

fitness functions by business partners have been observed. Finally, the fitness functions

for all scenarios in SAFIRE have been defined using the technique described in subsec-

tion 5.3.12, but to facilitate this task, another possibility has been explored: semi-

automatic evolving of fitness functions using grammatical evolution which is a popular

genetic programing technique introduced in (24). The details of the grammatical evolu-

tion implementation and application in SAFIRE have been presented in (25). Utilising

the proposed semi-automated formulation assistance, the overall work flow for a partic-

ular scheduling problem can be summarised as follows. First, end-users consider the

system model and scheduling policies used, and determine a set of symbols and opera-

tors forming a context-free grammar that can be used to express analytical models that

could potentially serve as fitness functions to evaluate solutions to the problem. Second,

they obtain a set of verification vectors. Each verification vector represents a concrete

system, and provides the parameter values for all of the entities that are scheduled in

that system, as well as their indicative fitness values. The indicative fitness values are

typically obtained via measurements taken from: (i) a real system, (ii) a cycle-accurate

simulation of the system, or (iii) a simulation using an appropriate high level model.

The grammar and the verification vectors are used as inputs into the formulation assis-

tant. The formulation assistant uses an evolutionary algorithm to create populations of

candidate analytical models that comply with the grammar. Each candidate analytical

model is evaluated against the data for every entity in the set of verification vectors, re-

sulting in a set of computed fitness. The suitability of the candidate analytical model is

then determined by comparing the set of computed fitness that it produces with the set

indicative fitness values. High suitability implies that the computed fitness values pro-

vide a tight upper bound on the indicative fitness values. The evolutionary algorithm

creates subsequent generations of candidate analytical models by recombining and mu-

tating candidates from the previous generation that are selected with a probability de-

pending on their suitability. This selection pressure ensures that the overall suitability of

the population increases over a number of generations, and the algorithm is able to find

individual candidates with high suitability. The best candidate analytical models are re-

turned as the output of the formulation assistant.

FDL
description

Optimisation
Engine

Configurator

Fitmess
function evaluator

Configuration
template

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 77

Confidentiality: Public Distribution

The aim of using a formulation assistant to provide suggestions for fitness functions is

not to supplant end-users in this area, but rather to help them in finding effective fitness

functions that can be explored in more detail. The overall processes is illustrated in Fig-

ure 38, which depicts end-users taking a system model and using it to create a grammar

and a set of verification vectors that form the inputs to the formulation assistant. The

formulation assistant produces candidate equations that can be checked and refined by

the end-users.

Figure 38: Overall process of deriving candidate fitness functions

6. METHODOLOGY FOR SECURITY, PRIVACY AND TRUST

We describe several aspects of methodology concerning the security, privacy and trust

framework, moving from specific methods and tools to general considerations. Since

the focus of our effort for SAFIRE has been the development of an implementation of

the Next Generation Access Control (NGAC) standard (26) (27) (28) by The Open

Group (TOG-NGAC), we devote most of our discussion of methodology to how it may

be integrated with SAFIRE augmented systems, but also how it may be applied more

broadly.

It would be worthwhile to mention a complicating factor for the security, privacy, and

trust aspects of SAFIRE. SAFIRE is intended as an augmentation to existing

manufacturing systems that should continue to operate normally when SAFIRE is

“turned off”. However, SAFIRE‟s security functions should be incorporated within the

supporting infrastructure, requiring changes to the configuration of that infrastructure.

In particular, existing manufacturing systems should be assumed to already incorporate

security systems that have been selected or designed and implemented by ICT staff

using an integration of commercial and bespoke components in a way consistent with

each enterprise‟s own ICT framework. On the one hand, the adoption of SAFIRE by an

existing manufacturing system would be hampered by SAFIRE‟s security features if it

were to demand drastic changes to, or bypassing of, already implemented security

functions, replacing them with prototype functions that would render the host system

degraded or inoperable with the removal or deactivation of SAFIRE and its security

mechanisms. On the other hand, the demonstration of novel security approaches cannot

be accomplished in the context of an existing platform without modification to its

“business as usual” configuration. Consequently, the adoption of SAFIRE‟s security

End user Formulation
assistant

Grammar

System model

Verification vectors

Candidate
fitness functions

D5.6 Integrated Methodology

Page 78 Version 1.0 25 October 2019

Confidentiality: Public Distribution

mechanisms does require modification and reconfiguration of existing enterprise and

platform security features.

To mitigate the impact of this complication, we bound the application of SAFIRE‟s

security mechanisms to uses where it affects primarily SAFIRE‟s operation. Though the

SAFIRE mechanisms could beneficially be applied more broadly in the enterprise

system, it requires commitment by the ICT organisation, and should only be undertaken

with a future production-ready version of the SAFIRE implementation. We provide

mechanisms that may have broad applicability, but that are initially used within

SAFIRE in the least disruptive way to the existing infrastructure, while identifying

additional potential future applications of the mechanisms. Initially, our TOG-NGAC

implementation is applied only within SAFIRE. If the prospect of extending its use

beyond this role is found to be attractive then it can be further integrated into the ICT

environment for additional roles. We will discuss such potential applications in Section

6.3.7.

We begin with the methodologies that concern the application of our Next Generation

Access Control implementation (TOG-NGAC), the development of attribute-based

access control policies for use with its tools and enforcement mechanisms, the

integration of TOG-NGAC with SAFIRE architecture and client applications, and the

embedding of TOG-NGAC within distributed platforms. In this way we hope to provide

a methodology that is applicable beyond the current demonstrations.

After the NGAC-related methodologies we proceed to methodology for broader issues:

security problem identification and security requirements specification in a

manufacturing system context, and the selection of appropriate security practices and

mechanisms to address the identified security problems. At this stage we also describe

some of the additional roles to which TOG-NGAC may be extended in an industrial

system.

6.1 METHODOLOGY FOR THE DEVELOPMENT OF SECURITY POLICIES

6.1.1 Overview

NGAC is a novel approach to access control that affords unprecedented flexibility and

the ability to represent and enforce arbitrary attribute-based access control policies

within a unified framework.

According to the NGAC-FA Standard (26):

Next Generation Access Control (NGAC) is reinvention of traditional access

control into a form that suits the needs of modern, distributed,

interconnected enterprise. The NGAC framework is designed to be scalable,

to support a wide range of access control policies, to enforce different types

of policies simultaneously, to provide access control services for different

types of resources, and remain manageable in the face of change.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 79

Confidentiality: Public Distribution

The attribute-based access control approach of NGAC subsumes diverse categories of

access control policies, such as discretionary access control (DAC), multi-level security

(MLS), role-based access control (RBAC), identity-based access control (IBAC), and

others. NGAC has not, to our knowledge, been applied previously in industrial

manufacturing or any Industrial Internet of Things (IIoT) environment.

The features and descriptions of previous NGAC reference implementations, and the

published examples, suggest that NGAC has thus far been applied primarily to

enterprise IT office automation systems. We have found the reference implementations

to be complex, difficult to port, difficult to modify, and have excessive external

dependencies. However, the scalability and flexibility of the NGAC approach make it a

potent tool for addressing the scale, complexities, and policy challenges of combined IT

and OT as found in IIoT systems. This has provided the motivation for us to pursue our

own simpler and more portable implementation.

NGAC provides a framework and mechanisms that have the potential to unify the

system-wide access control policies, and provide the ability to understand the net effect

of the composed policies, and to provide a coherent approach to specifying access

control policies, and configuring the underlying protection mechanisms that are relied

upon to provide the isolation and architectural integrity to the NGAC implementation.

6.1.2 Guidelines

The following subsections first introduce the conceptual framework for NGAC policy

specification, then describe the preliminary steps to the creation of a policy, then the

steps to complete a policy, and finally the expression of the policy in the declarative

policy language for use with the TOG-NGAC software.

6.1.2.1 NGAC Policy Framework

The fundamental concepts of the access control framework are:

 A set of basic elements – representing entities

 A set of containers of different types – to represent characteristics of basic

elements

 A set of relations – to represent relationships among basic elements and

containers

There is also a set of commands for the creation, deletion and maintenance of basic

elements, containers and relations.

The basic elements comprise:

 Users – unique entities that are either humans, trusted programs, or devices  

 Processes – system entities that have a reliable user identity and operate in a

distinct memory

 Objects – resources to which access is controlled, e.g. files, messages, database

records, etc.

 Operations – denote actions performed on elements of policy (either external

protected resources or internal resources)

D5.6 Integrated Methodology

Page 80 Version 1.0 25 October 2019

Confidentiality: Public Distribution

 access rights – enable actions to be performed on elements of policy (either

external protected resources or internal resources)

Containers comprise:

 User attributes – defines membership on the basis of an abstract user capability

or property. The members of a user attribute may be users or other user

attributes. Membership is transitive.

 Object attributes – defines membership on the basis of an abstract object

characteristic or property. Members of an object attribute may be objects or

other object attributes. Membership is transitive.

 Policy classes – defines membership related to an access control policy, such as

RBAC, MLS. Members of a policy class may be users, user attributes, object, or

object attributes. Multiple policy classes may exist simultaneously.

Every user attribute, object attribute, and policy class has a unique identifier. Policies

are expressed as configurations of relations of the following four types:

 Assignment – defines membership within containers, involves a pair of policy

elements

 Association – defines authorized modes of access, it is a 3-tuple

< userattribute, accessrightset, attribute >

 Prohibition – specifies a privilege exception

 Obligation – dynamically alters access state, triggered by an event

The version of the access control framework implemented by TOG-NGAC does not

include Prohibitions or Obligations at the present time.

From the relation types above, these types of derived relations can be computed   for

the purpose of making access control decisions:

 Access control entry – derived from association; < user, accessright >

 Capability – derived from association; < accessright, policyelement >

 Privilege – derived from association; < user, accessright, policyelement >

The aforementioned commands for the creation, deletion and maintenance of basic

elements, containers and relations are administrative in nature and exist outside of the

policy expression framework, but they are central to policy automation and to the

activity of incrementally building or modifying a policy. These commands are used

internally within the software and exposed for use by administrative tools.

We now describe the methodology for using the NGAC policy framework to develop

attribute-based access control policies. These are the technical policies, or policy

models, that are created to enable technical protection mechanisms to be applied.

6.1.2.2 Policy Definition Preliminaries

Before a technical policy model can be created several activities should have already

occurred. A policy, though declarative, presumes an operational semantics that is

provided by the software that interprets and applies the policy. It is necessary to

understand this semantics so the behaviour of the software under the control of the

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 81

Confidentiality: Public Distribution

policy is predictable. The effect of a policy also depends on the ICT and physical

environment to satisfy the assumptions that the policy and its animating software rely

upon. These include supporting features of the platform software and hardware, the

physical security of the facility that houses the hardware and network connections, and

the properties of the communication lines over which networking is done. A high-level

security analysis is presumed to have been conducted to identify the collection of

resources to be protected (access controlled) and the users who are permitted to interact

with the system and who are to be granted or denied access to resources. These topics

are discussed in the later sections 6.2 and 6.3.

The necessary information should be compiled in order to complete the following steps

to prepare for the development of an attribute-based access control policy:

 Create identifiers for the objects (resources) to be controlled by the policy.

These are the assets to be protected that were identified in the security analysis.

 Create identifiers for the users (subjects) to be controlled by the policy. These

are the active entities that were identified in the security analysis, which are to

be granted or denied access to resources.

 Identify a set of attributes of objects (binary attributes, i.e. that indicate

membership in a class named by the attribute) that are important to the

organisation and relevant for the purpose of determining how objects should be

handled. Create an identifier for each of these “object attributes”.

 Identify a set of attributes of users (again, binary attributes) that are important to

the organisation for the purpose of determining the status of a user, such as a

user‟s responsibilities, that may contribute to determining what privileges should

be granted to a user. Create an identifier for each of these “user attributes”.

A user is contained in a user attribute and an object is contained in an object attribute.

Since attributes may designate broad or narrow categories, a narrow category may be

contained in a broader category. Thus, an attribute may “contain” another attribute.

Attributes should be thought of as “containers”. Objects will be assigned to (contained

in) object attributes and users will be assigned to user attributes. Object attributes may

in turn be contained within other broader object attributes. The same will be true for

user attributes. The choice of attributes is arbitrary as far as the framework and the

enforcement mechanisms is concerned, but the attributes should capture all of the

factors that are relevant to making decisions about protection and access regardless of

what the particular objects and users may do.

6.1.2.3 Policy Creation

The next step to create a policy specification is to organize objects and users each

within appropriate attribute containers. The assignment relation, introduced in the

NGAC policy framework Section 6.1.2.1, is used to place a user or a user attribute into

a (different) user attribute container, or to place an object or object attribute into another

object attribute container.

D5.6 Integrated Methodology

Page 82 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Since attributes may contain other attributes, this structure forms a (inverted) hierarchy

(or non-inverted tree) of object attributes and user attributes respectively, with users

appearing as leaves at the top of a user attribute tree and objects appearing as leaves at

the top of an object attribute tree.

The concept of attributes as containers, for example, user attributes that contain users,

rather than being something that is attached to a user, may be the biggest conceptual

adjustment to which a user of the access control framework must adapt. When an entity

is contained in another (attribute) entity we say that it is assigned to the attribute. We

may also say that the former entity is an ascendant of the latter (attribute) entity (since

our attribute trees are right-side up, not inverted).

Now that we have created rich trees of attributes for users and for objects, and

appropriately allocated the users and objects to those attributes, it is time to create the

relations among user and object attributes that will create permissions for users to

perform operations on objects. These will be the association relations introduced in the

NGAC policy framework. Recall that an association is a 3-tuple consisting of a user

attribute, a set of access rights, and an object attribute.

To create appropriate associations in our policy graph we may ask the question, “If a

given user is to have a certain access right for a given object, what attribute of the user

and what attribute of the object are those that best characterise the justification for the

permission within the hierarchical scheme of attributes?” The corresponding access

right should be added to the set of access rights in the association between the user

attribute and the object attribute. If we ask the question again for the same user and

object but for a different access right, we may find that the same attributes apply, in

which case the new access right would be added to the set of access rights in the

existing association, or, if different attributes apply the access right would be added to a

new association between the newly identified pair of attributes.

Another approach would be to take user attribute and object attribute pairs and

determine what set of access rights (if any) should apply based on the interpretation of

the attributes. By a careful and appropriate assignment of users to user attributes and

objects to object attributes each user would gain appropriate permissions to each object

by virtue of the associations already created. Remember that an association applies to

all of the ascendants of the included user attribute and object attribute.

6.1.2.4 Policy Representations

Security policies, as well as the definition of the subjects and objects of the access

control system and their attributes, are readily illustrated in the form of a directed graph.

In the foregoing section one is invited to think of the relations in graphical terms. This

graph is an external rendering of the model constructed and used in the TOG-NGAC

Policy Tool and the Policy Server. It may be particularly convenient for developing a

policy concept and for illustrating simple policies but the graphical representation may

become unwieldy for complex policies. Still it is only a drawing and not something that

can be used by the software. A representation of a policy that may readily be processed

by logic is what is needed for automation of policy enforcement. Such a representation

is specified in the User Manual and discussed in Section 6.1.3.1.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 83

Confidentiality: Public Distribution

6.1.3 Algorithms, technologies and tools

6.1.3.1 The Open Group’s NGAC Implementation

The Open Group has developed its own implementation of NGAC software (TOG-

NGAC), including a Policy Tool and Policy Server that use a straightforward

declarative language to express policies that comply with the NGAC framework. We

first discuss this language and its use. Later we describe the software components of

TOG-NGAC.

Our version of the NGAC functional architecture is shown in Figure 39. All of the

components coloured in blue are part of the NGAC subsystem. We “unbundle” the PEP

and RAP components from the rest of the implementation to place control of these

components into the hands of the Client Application developer as we discuss further in

Section 6.2, where we describe the methodology for the integration of NGAC

mechanisms.

A policy expressed in the declarative policy language can be read by both the Policy

Tool and the Policy Server, and both components incorporate the logic to make

decisions based on the imported policy. The Policy Tool is used offline to develop a

policy configuration to be used with the Policy Server in a production setting.

NGAC declarative policies are contained in ordinary text files. The „ngac‟ Policy Tool

may be used in conjunction with any text editor to develop and test a policy in the

declarative language.

The Policy Server provides a RESTful interface for the Policy Query Interface and the

Policy Administration Interface. The administration interface is used to load and

manage policies in the server; the query interface is used to obtain policy decisions.

D5.6 Integrated Methodology

Page 84 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Figure 39: NGAC Functional Architecture with "unbundled" PEP/RAP

The declarative language representation of a policy is easily constructed from a

graphical representation of the policy, which may be used informally for its

conceptualisation and development. The present declarative language for SAFIRE is

based on the NGAC policy framework but it does not include prohibitions and

obligations, though these may be added incrementally in the future for cases that need

them.

The specification and implementation description of TOG-NGAC are given in D5.4

Full Prototype of the SPT Framework, D5.5 Final Specification of the SPT Framework,

and D5.8 Final Integrated Cloud Platform. The D5.8 document also contains

instructions for using the „ngac‟ Policy Tool to develop and test policies. We further

discuss the use of the Declarative Policy Language, the Policy Tool and the Policy

Server in the following sections.

6.1.3.2 Declarative Policy Specification

The Declarative Policy Language developed by The Open Group is described in the

Security Framework section of the User Manual of the SAFIRE Platform in D5.8. The

declarative policy language representation is easily constructed from a graphical

representation of a policy if one was created as vehicle for the policy design. Every

identified user, object, user attribute, and object attribute has an identifier that is first

declared by the following elements: user(<identifier>), object(<identifier>

), user_attribute(<identifier>), and object_attribute(<identifier>).

Object declarations have two forms, a short form with a single argument and a long

form with seven arguments. The short form only declares an identifier as being the

object identifier. The long form adds arguments for an object class, which is like an

object type, and other arguments that contain information about the location of the

actual object. The short form is provided since the object identifier is all that is required

to respond to an access() request, and is therefore sufficient for the development and

testing of a policy. The long form, provides object location metadata, that is returned in

response to a getobjectinfo() request. This API may be used by a PEP and/or RAP to

obtain the type and location metadata, which the PEP/RAP may need in order to carry

out an operation that was approved by an access() request. Furthermore, the location

of the object may not be known at the time a policy is written. A short form used in a

policy specification for development and testing can later be replaced by the long form

of the object() element either by editing the policy file, or by dynamic incremental

element replacement after the policy file is loaded, using add() and delete()

administrative operations.

Similarly, there are elements to declare identifiers for operations, object classes, policy

classes, and a distinguished element called the connector. The object class declaration

object_class(<object class identifier>, <operations>) supplies a list of

operations that may be used on any object of the declared object class. The connector,

by convention, always has the identifier „PM‟.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 85

Confidentiality: Public Distribution

After all the elements have been declared, the assignments may easily be read from the

graphical representation; these are the arrows indicating membership of an entity in the

container represented by another entity. Assignments are encoded as assign(<entity

identifier>, <entity identifier>). We say <entity identifier> here because

assignments can be made not only from a user to a user attribute, a user attribute to a

user attribute, an object to an object attribute, and an object attribute to an object

attribute, but also from a user attribute or an object attribute to a policy class, and from a

policy class to the connector. In fact, any element may be assigned to the connector if it

is not assigned somewhere else, since the purpose of the connector is to provide

connectivity of any element in the graph, so there are no disconnected elements.

Finally, the associations that cross between the user attribute and object attribute trees

are read from the graph along with the corresponding set of access rights. These then

comprise the elements of the declarative policy. A complete declarative policy is

contained in a declaration of the form, policy(<policy name>, <policy root>,

<policy elements>). where, policy root is the identifier of a policy class appearing

among the policy elements, and policy elements is a square-bracketed, comma-

separated list of the policy elements described above that make up the policy.

For the graphical policy in Figure 40, the declarative policy representation is shown in

Figure 41. In the graph we‟ve used the convention of placing users in the top left,

objects in the top right, and user and object attributes below the users and objects

respectively. The arrows represent assignment and the dotted lines associations.

Figure 40: Example Policy (a) in graphical form

policy('Policy (a)','Project Access', [

 user('u1'),

 user('u2'),

 user_attribute('Group1'),

 user_attribute('Group2'),

 user_attribute('Division'),

 object('o1'),

 object('o2'),

D5.6 Integrated Methodology

Page 86 Version 1.0 25 October 2019

Confidentiality: Public Distribution

 object('o3'),

 object_attribute('Project1'),

 object_attribute('Project2'),

 object_attribute('Gr2-Secret'),

 object_attribute('Projects'),

 policy_class('Project Access'),

 connector('PM'),

 assign('u1','Group1'),

 assign('u2','Group2'),

 assign('Group1','Division'),

 assign('Group2','Division'),

 assign('o1','Project1'),

 assign('o2','Project2'),

 assign('o3','Gr2-Secret'),

 assign('Project1','Projects'),

 assign('Project2','Projects'),

 assign('Division','Project Access'),

 assign('Projects','Project Access'),

 assign('Gr2-Secret','Project Access'),

 assign('ProjectAccess','PM'),

 associate('Group1',[w],'Project1'),

 associate('Group2',[w],'Project2'),

 associate('Group2',[r,w],'Gr2-Secret'),

 associate('Division',[r],'Projects')]).

Figure 41: Example Policy (a) in the declarative policy language

6.1.3.3 Policy Development and Testing

The TOG-NGAC implementation provides a desktop command-line Policy Tool called

„ngac‟ that can load policies expressed in the declarative policy language and can

answer queries such as access(‘Policy (a)’,(u1,r,o1)), the meaning of which is:

“under the policy named „Policy (a)‟, is user „u1‟ allowed to read object „o1‟?”. Policies

are contained in text files that may be created with any text editor.

While editing a policy in a text editor window the „ngac‟ tool can be started in another

window. The policy file should be saved from the text editor and then read with the

import_policy() command of the „ngac‟ tool. A full list of commands available in

the Policy Tool are documented in D5.8. These commands include importing of policy

files, setting an imported policy as the current policy, and querying the policy with

access commands. By querying the policy the user may ascertain that the interpretation

produced by the policy algorithms operating on the internalized policy model

correspond to the expected interpretation and that the policy has been correctly coded.

The edit-save-import-query cycle may be repeated as necessary until the user is satisfied

with the policy.

Figure 41 illustrates the „ngac‟ Policy Tool being used to query the example policy of

Figure 40. The circled query, which returns “grant”, succeeds because of the existence

of the red-highlighted path in the accompanying policy graph.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 87

Confidentiality: Public Distribution

Figure 42: 'ngac' tool queries against example Policy (a)

When the user is satisfied that the policy is complete and produces the desired

behaviour, the last version of the policy file should be retained for loading into the

Policy Server for production use.

6.1.3.4 Policy Enforcement Mechanisms

The central component of the NGAC policy enforcement scheme is the Policy Server,

which contains a Policy Decision Point (PDP) to answer access queries against a loaded

policy that has been selected to be the current policy. The Policy Server provides a

Policy Query Interface to utilise the services of the PDP, and a Policy Administration

Interface to manage policies within the server through the Policy Administration Point

(PAP).

The effect of NGAC policy enforcement is achieved by a collection of cooperating

components that are identified and organised according to an architecture introduced by

the NGAC Functional Architecture.

D5.6 Integrated Methodology

Page 88 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Our version of the NGAC functional architecture, the roles of its components, and the

actions needed to integrate NGAC into an application environment are further discussed

in Section 6.2.

6.1.3.5 Other NGAC Implementations

There have been several reference implementations (RI) of NGAC, mostly under the

name “Policy Machine” (PM), that have been developed over several years by some of

the authors of the NGAC standard.

One reference implementation of the NGAC standard consists of components that are

implemented in Java and communicate over SSL sockets. It was developed to run on

Windows Server, with LDAP, Active Directory, Certificate Authority, and other system

and network services. A newer version relaxes the need for Windows Server, LDAP and

AD. Considerable support is still required from the IT environment in which the PM

operates. In place of LDAP/AD a newer PM reference implementation used a MySQL

database for policy storage, and later, as an option, a Neo4j6 database, which is better

suited to policies in the NGAC framework. As more recent prototypes had emerged,

they seemed to have focused on narrower aspects of NGAC functionality, rather than a

complete system.

Early reference implementations of NGAC had incomplete or out-of-date

documentation. Later releases had even less documentation that we had seen with early

versions. The troublesome characteristics of the reference implementations caused us to

consider whether we should create an implementation with more favourable

characteristics that we could control.

By the time the SAFIRE project was underway we had come to the conclusion that we

could not depend on other parties to produce future versions of NGAC RIs that would

be aligned with our evolving needs. Based on the favourable outcome of a feasibility

study conducted on another EC project, we proceeded with our own implementation of

NGAC.

Ultimately, our efforts have produced a pleasing result: TOG-NGAC is simple,

portable, extensible, and lightweight, having no external dependencies. It is being

exploited and extended in other projects.

6.2 METHODOLOGY FOR THE INTEGRATION OF NGAC MECHANISMS

6.2.1 Overview

NGAC, as a Reference Monitor7, is inserted as a mediator between resource-using

applications and the resources used, enabling the enforcement of an access control

policy.

6 Neo4j is a graph database that is available in community and commercial versions.

7 Technically, it is a Reference Validation Mechanism, an implementation of the Reference Monitor concept.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 89

Confidentiality: Public Distribution

An application is often initially developed without consideration of access control,

implemented to access resources using an interface provided by the resource itself or by

the system infrastructure. This situation is illustrated in Figure 42. In order to introduce

policy control over the application‟s access to the resource, a reference monitor, such as

NGAC, is inserted into the resource access path as illustrated in Figure 43.

Figure 43: Inserting NGAC into the Resource Access Path

NGAC effectively “locks up” the resource as it mediates the path to the protected

resource. NGAC presents to the Client Application (CA) a Policy Enforcement

Interface, which is now the entry point to the only path available for accessing the

protected resource, because the reference monitor is placed within the infrastructure

level and given exclusive access to the Resource Access Interface. The CA must now

have authorisation in order to perform an operation on the protected resource, indicated

in Figure 43 as a key for the lock.

A refinement of this simple illustration of NGAC is presented in Figure 44, showing

how the functional components of NGAC are arranged to achieve mediation of the

resource access path. The developer of an application that will use resources protected

by NGAC needs to perform the following steps to integrate the application with NGAC:

 Modify the application to use the NGAC resource access path by calling a

Policy Enforcement Interface instead of directly calling the Resource Access

Interface to perform operations on protected resources.

 Develop a Policy Enforcement Point (PEP) and a Resource Access Point (RAP)

to complete the Resource Access Path as represented by the orange arrows in

Figure 43 and Figure 44, if they do not already exist for the kind of resource

involved, The PEP must consult the Policy Server for a policy decision, and, if

permission is granted, perform the resource access through the RAP, which in

turn uses the original Resource Access Interface.

D5.6 Integrated Methodology

Page 90 Version 1.0 25 October 2019

Confidentiality: Public Distribution

 Test the function of the PEP and RAP for both “grant” and “deny” responses

from the Policy Server. In the “grant” case the resource access path should

function just as though NGAC were not present. The Policy Server provides a

feature to facilitate such testing.

 Create and test an appropriate access control policy, using the „ngac‟ Policy

Tool, to govern all users and objects,

 Isolate the protected resource and install the PEP and RAP in the infrastructure

so that they run with the privilege to access the isolated resource (a system

administrator may need to assist).

 Load the policy into the Policy Server for final policy testing and for production

use.

Further details of policy development, PEP, RAP, PDP interaction, and integration of

the NGAC components into the platform infrastructure are provided in Section 6.2.2.

6.2.2 Guidelines

We now discuss in more detail some of the steps introduced above.

6.2.2.1 Adapting a Client Application to use the NGAC Resource Access Path

The PEP and the RAP are “unbundled” from the TOG-NGAC core implementation. In

this way the development efforts and code bases of the Client Applications (CA) can be

decoupled from those of the NGAC core. By unbundling the PEP and RAP the details

of the Policy Enforcement Interface are left to the discretion of the application

developer, and the protected resources can be accessed at a level of abstraction chosen

to be appropriate by the developer.

Revisiting Figure 43, observe the differences between the unmediated access scenario

and the NGAC-mediated access scenario. Suppose an application has been developed to

use resources directly with no access control mediation. The application accesses the

resource through an interface provided by the resource server8. When NGAC mediation

is introduced, the code fragment (or a similar code fragment) is reproduced within the

logical perimeter of NGAC (in the RAP) to use the existing resource access interface.

The resource-accessing code in the Application (now an NGAC Client Application) is

replaced to use an NGAC-provided Policy Enforcement Interface to access the now

Protected Resource. If the policy enforcement interface provided by NGAC is not well

suited both to the Application and the kind of resource, e.g. if the interface is fixed for

all resource kinds, this conversion activity can be disruptive to the application‟s

development. It may possibly even require restructuring or refactoring of the application

(such as when object-oriented constructs are used to encapsulate the implementation of

8 For simplicity, the resource server is implied in this figure. It is the agent that actually provides the
Resource Access Interface and provides the defined operations on the resource and manages the hidden
data of the resource. The resource server is an abstract data type manager. In the case of an ordinary file
the resource manager is the operating systems file system software that manages a raw storage device and
provides an abstraction of files and directories, and provides the file access APIs.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 91

Confidentiality: Public Distribution

external objects). To avoid such difficulties, the implementation of TOG-NGAC takes

an approach whereby the PEP and RAP are factored-out from the rest of the

implementation as shown in the simplified functional architecture depicted in Figure 44.

The core TOG-NGAC implementation consists of the „ngac‟ Policy Tool and the „ngac-

server‟ Policy Server.

The Client Application developer must create the PEP and the RAP to complete the

resource access path (shown in orange) if an appropriate PEP and RAP do not already

exist for the resource. However, instead of the developer having to adapt to a Policy

Enforcement Interface that is fixed for all resource kinds, the developer is free to define

the Policy Enforcement Interface when implementing the PEP.

Figure 44: The PEP-RAP Design Pattern for the Resource Access Path

The PEP and the RAP should both be small and logically simple modules, and they may

possibly be packaged within the same executable program. The RAP, which uses the

resource access interface, essentially includes the code previously appearing in the

Client Application to access the Resource Server, which was replaced by calls to the

Policy Enforcement Interface.

The PEP is basically a branching statement that invokes the PDP‟s access() query

function as the condition of the branch. Figure 45 uses high-level pseudo-code to

illustrate the conceptual simplicity of the PEP and the RAP. Of course, since both could

be implemented as Web services, there would be the necessary additional details of

marshalling arguments, invoking the PEP and the RAP, and returning and interpreting

results. Nonetheless, following this simple design pattern will help to assure that the

PEP and RAP are trustworthy components of the NGAC resource access path.

PEP pseudo-code RAP pseudo-code

pep(Op, Object, Data)

 determine User from the session environment

 query_result = pdp:access(User, Op, Object)

 if query_result == ‘grant’ then

 ObjInfo = pdp:getobjectinfo(Object)

 ra_result = rap(Op, Object, Data, ObjInfo)

rap(Operation, Object, Data, ObjInfo)

 identify res_server using ObjInfo

 result = res_server:Operation(Object, Data)

 return to PEP: result

D5.6 Integrated Methodology

Page 92 Version 1.0 25 October 2019

Confidentiality: Public Distribution

 return to Client App: ra_result

 else

 return to Client App: ‘Op on Object denied’

Figure 45: PEP and RAP pseudo-code

The PEP is called by a Client Application (CA) on behalf of some user through a Policy

Enforcement Interface to perform an operation on a resource provided by a Resource

Server. After marshalling arguments and calling the Policy Server‟s Policy Decision

Point (PDP), the PEP implements a simple conditional that, based on the “grant”/”deny”

response from the PDP, either proceeds to perform the requested resource operation

through the RAP, or it returns to the CA with an indication of an access failure.

The access() query, made by the PEP to the PDP, specifies the user, the object, and

the operation to be performed on the object. Using the server‟s current policy, the PDP

computes whether the user is permitted to perform the operation on the object and it

returns either “grant” or “deny”. The “grant” branch of the PEP branching statement

invokes the RAP to perform the specified operation on the object, while the “deny”

branch immediately returns a failure to the CA.

The RAP is simple as well, containing code to access a resource server that looks much

like the code that would otherwise be in the resource-using application if it were to

directly access the resource without mediation by the access control system. The RAP

uses the identity and location of the object, obtained from the server by the PEP, to

perform the indicated operation, optionally using the data argument.

The simplicity of the PEP and the RAP, and their isolation as separate and distinct

execution units, are a critical foundation of the strategy of unbundling them from the

core NGAC implementation. Since they are simple, they can be verified by inspection,

thereby establishing their trustworthiness. Since they are separate execution units, they

cannot be corrupted by the CA or by other processes. Finally, as distinct execution units

(processes) they can be given privileges distinct from those of the CA and those of other

processes. Specifically, they should be given exclusive access to the protected resources

(or resource servers), so that there is no way for the CA or another process to bypass

them and directly access the protected resources.

This architectural approach allows a CA implementer to develop and test access to new

object kinds, without a need to modify the Policy Server or resource servers.9

6.2.2.2 Installing the components and configuring the operating environment

Using the „ngac‟ Policy Tool and the „ngac-server‟ Policy Server as an individual user

working in a private directory for development and testing, or for demonstrations in a

benign environment, is very straightforward. Installing and configuring the Policy

9 The only required action is to assign the new resources, through administration of the operating
environment’s permissions, to the pool of resources that can only be accessed by the RAPs.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 93

Confidentiality: Public Distribution

Server and PEPs/RAPs for a production environment, especially one with active threat

agents, would require additional steps, such as:10

1. Create a new user „ngac_user‟ and a group „ngac_group‟.

2. Make the executable files for PEPs/RAPs owned by the „ngac_user‟.

3. Set the permissions to make the executable files executable only by „ngac_user‟

and „ngac_group‟.

4. Turn on the set-UID-on-execution bit on the Policy Server and PEP/RAP

executable files so that they will run as „ngac_user‟.

5. Allocate TCP ports for the network services, PEPs, and Server APIs.

6. Set up trusted channels (e.g. SSL sockets) for application and NGAC component

interactions. This task includes generation, distribution, and installation of

certificates carrying cryptographic keys. (It also entails enabling the Policy

Server to use SSL sockets.)

7. Using the operating environment‟s security features, set the permissions on

ordinary resources that are to be protected, such as files, to be read/write only by

„ngac_user‟ and „ngac_group‟.

8. Create a master initialisation script that starts the Policy Server, PEPs/RAPs, and

Web services with appropriate process ownership, privileges, and ports. Arrange

for the script to be run on system startup.

This is an advanced system administration exercise.

6.2.3 Algorithms, technologies and tools

6.2.3.1 TOG-NGAC

We have implemented a Policy Server that contains the Policy Decision Point (PDP),

Policy Administration Point (PAP), and Policy Information Point components of the

NGAC functional architecture as illustrated in Figure 46. The server offers two external

interfaces, the Policy Query Interface and the Policy Administration Interface, both

realised as RESTful APIs.

Further, we have implemented an interactive Policy Tool that can be used to test

policies under development. It replicates the decision logic of the PDP in a desktop tool

and provides features to automate tasks and to observe the internal operational status of

the algorithms when necessary.

10 In fact, the prototype implementation of TOG-NGAC is not intended for use in production environments.

D5.6 Integrated Methodology

Page 94 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Figure 46: NGAC Functional Architecture with "unbundled" PEP and RAP

To place the ability to add new object types into the hands of the developer we have

“unbundled” the PEPs and RAPs. The path from the application to the protected

resource, indicated in the colour orange, is now owned by the application developer.

The developer is expected to faithfully implement this architecture and to use the

indicated standardized interfaces, except as may be necessitated by novel resource

kinds. The PEP and the RAP should ideally be distinct processes so that they provide

maximum functional isolation and can be run with privileges different to those of the

application, and possibly to each other. They remain trusted components of the NGAC

functional architecture and should be very small and simple so that their correctness is

easily verifiable by inspection. The PEP only needs to call the PDP using an access

query that the PDP answers with “grant” or “deny”. Based on this response the PDP

must not perform the access to the RAP (if “deny”), or proceed to perform the object

access and return the result to the application (if “grant”). The PEP is basically a

decision statement conditioned by the PDP‟s response that performs the access on one

branch, or reports an error on the other branch.

The Policy Administration Interface is protected with a token, the possession of which

is granted to administrators and administrative tools. Through this interface the PAP can

be commanded to load and unload policies, select a policy to be active, combine

policies in various ways, and modify loaded policies incrementally by adding and

deleting policy elements. The value of the token is established when the Policy Server is

started. If no token is specified at that time the PAP will use a default token from the

Server‟s build-time parameters. This feature may be convenient for testing and benign

environments.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 95

Confidentiality: Public Distribution

6.2.3.2 NGAC Initialisation and Session Manager

NGAC performs the policy interpretation and access control function but it does not

itself perform identification and authentication (I&A), a vital preliminary service. These

functions are ordinarily performed by the operating environment. The user id (or

something uniquely linked to the user id) of the user running the application must be

made available to the PEP and subsequently to the PDP to use when answering access

requests. This user identity must be reliable or the access control system can be

spoofed11. The application itself should not be trusted to provide this information.

One approach is to have the system process that logs the user in and initiates the user‟s

session provide the user or session identifier to a distinct PEP instance that is started for

the session. We refer to this system process the initialisation shell or session manager.

The shell could provide the user identity directly to the PEP.

The session manager is a trusted component of the system. It should notify the server

when a session is established, who is the associated user, and when the session is

terminated. The server is already able to register sessions and accept a session id in lieu

of a user id in access queries. The NGAC server could further participate in the I&A

scheme by storing the user id and password in the PIP, where the session manager can

request it when performing a user login.

Another thing we don‟t want to trust the user or application to do is to set the policy that

will be used for computing access requests. Otherwise an all-permissive policy can

temporarily be substituted for a restrictive one. Policy selection should be done by the

master initialisation shell.

6.2.3.3 Protecting Web Services

We assume that PEPs will be implemented as a Web service and the RAPs may be as

well, for ordinary local resources.

For protected objects that are themselves Web services the PEP will be a proxy for the

Web service. The contrast for PEPs as a Web service serving ordinary resources vs

PEPs servicing Web service resources is depicted in Figure 47.

11 If a user or a process can claim an identity without authentication then it can claim an identity that has
maximum privileges in the policy.

D5.6 Integrated Methodology

Page 96 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Figure 47: NGAC PEPs for ordinary resources and Web services

The interaction of the components is a bit different in the two cases. We consider this in

the next section.

6.2.3.4 Sequence of NGAC Component Interactions

An example of a simple NGAC execution sequence with an ordinary PEP/RAP is

shown in Figure 48. This example assumes that trusted channels (e.g. SSL sockets) are

used for communication among the components so that identity is established by the

communication negotiation.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 97

Confidentiality: Public Distribution

Figure 48: Normal PEP NGAC sequence chart

An example of an NGAC execution sequence with a Web service proxy PEP is shown

in Figure 49. This example also assumes that trusted channels (e.g. SSL sockets) are

used for communication among the components so that identity is established by the

communication negotiation. Another approach would be to package the PEP into the

Web service.

D5.6 Integrated Methodology

Page 98 Version 1.0 25 October 2019

Confidentiality: Public Distribution

Figure 49: Web service PEP NGAC sequence chart

6.3 METHODOLOGY FOR OVERALL SYSTEM SECURITY, PRIVACY AND TRUST

6.3.1 Overview

The approach taken by this methodology is a simultaneous application of two different

but complementary established approaches, ISO 15408 (29) (30) (31) and IIC IISF (32).

They are complementary in this application because ISO 15408, otherwise known as the

Common Criteria (CC), can be applied to any kind of system that includes security

enforcing functions, while the IISF specialises the domain to large complex distributed

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 99

Confidentiality: Public Distribution

systems of systems in an industrial environment. SAFIRE adds the further

specialization to Systems of Production Systems (SOPS) in a Factory of the Future

(FoF) setting.

ISO 15408 has a powerful approach and method for identifying and validating security

requirements for a particular system or product, and providing a methodology for

evaluating the target for success in implementing identified requirements. It starts from

primitive concept of threat and policy and ends with the certification of systems and

products.

The IISF has already baked-in some reasoning of the kind prescribed by ISO 15408

leading to the identification of a generalized architecture (represented in the IIC‟s

Reference Architecture, IIRA (33)) and a framework of security functional requirements

applied within the architecture. It is useful to understand and apply the principles of ISO

15408 even when some of the work has already been done, because the IISF is still very

general and leaves many choices of implementation and deployment to be made. The

disciplines of ISO 15408 concepts are advantageous in weighing the many decisions

that must be made.

Thus, we have created a methodology that is a blend of these useful approaches.

6.3.2 Approach

Both ISO 15408 and IIC IISF are useful in analysing the security requirements of a

system or a component. Both provide detailed catalogues, ISO having SFRs and SARs,

and IISF having a collection of hierarchical building blocks of security functionality. At

the very least, consulting them helps to assure that nothing is forgotten. Rather than

staring at diagrams of your system in search of security weaknesses, one can search the

catalogues and consider whether there is a need for such and such an item in one‟s

system.

Using ISO 15408 Concepts:

 Define the Security Problem.
Using concepts and methodology arising from the ISO/IEC 15408 standards for

security evaluation criteria, the methodology starts with defining the Security

Problem that must be solved in the target system. This definition includes:

 identification of the threats the system is reasonably expected to face,

 identification of the organisational security policies that any solution to

the security problem must enforce, and

 identification of the assumptions concerning the environment in which

the system operates that can be safely made.

 Identify Security Objectives.
The security problem is stated in terms of three diverse kinds of entities: threats,

policies, and assumptions. In the present step these are then normalized into a

D5.6 Integrated Methodology

Page 100 Version 1.0 25 October 2019

Confidentiality: Public Distribution

uniform set of conditions, viz. objectives, which if achieved would solve the

security problem by assuring that every reasonable identified threat is countered,

and every security policy enforced, by a combination of measures that is

consistent with the continuous maintenance of the identified environmental

assumptions. Specifically, the objectives must not require stronger assumptions

than those that can be guaranteed for the environment.

 Select Security Requirements.
A set of security requirements, consisting of security functional requirements

(SFRs) and security assurance requirements (SARs) are selected. SFRs define

behavioural requirements, while SARs have to do with the manner in which the

SFRs are realised. We say the requirements are “selected” because ISO 15408

provides a catalogue of SARs and SFRs that have proven to cover a very high

percentage, if not all, of the situations that have been encountered over a long

period of experience preceding and since the establishment of the standard. The

applicability of requirements from the catalogue are enhanced by the possibility of

instantiating the requirements in four ways that permit them to be adapted to a

wide variety of situations without sacrifice of precision.

This approach can be used at any scale, at the system level or the component level. In

fact, by far the most common application of the CC is to perform product evaluations.

Such products are used in large number and diversity in the building of complex

systems. The properties of the products become important when it comes to having

confidence in the properties of systems constructed of compositions of such

components.

Using IIC IISF Concepts:

 Understand the Framework.
Early sections of the IISF provide motivation and explanation of the viewpoint

embodied in the Framework. It also presents some threat and risk-based reasoning

that provide foundation for the security functional requirement identification. The

actionable substance of the Framework is in the later sections, which contain a

detailed presentation of the security functional building blocks that are needed for

an industrial networked system and shows how these building blocks are applied

to achieve various security objectives that are identified within the context of the

reference architecture. More on the functional building blocks will be presented

shortly.

 Understand the relation of the IISF to the Reference Architecture (RA).
The Security Framework spans the entire architecture from the IT domain to the

OT domain and the connections between them in an IIoT system.

 Understand how the RA relates to your concrete system architecture.

The IIRA functional view is sufficiently general that it should not be difficult to

find a mapping to a concrete IIoT system.

 Now map the Security Framework to your concrete system architecture.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 101

Confidentiality: Public Distribution

From this one can discover where the functional building blocks of the IISF need

to be applied (potentially) depending upon the specific threats and environmental

assumptions of your security problem. This exercise enables the system

implementer to see a security approach that spans the entire system and to select,

integrate and configure functional components. It should be noted that both the

RA and the IISF functional building blocks span the entire IIoT system from end-

to-end.

Challenges

Relating the IISF to the IIRA to your system can be daunting if you are unfamiliar with

the IISF. For this reason it is useful to start with a good understanding of all three. First

you must discover whether one of the architectural view alternatives of the IIRA is

more readily relatable to your system. It may be necessary to form an interpretation of

the IIRA model that conforms to your system, or you may find it better to make your

system architecture conform to one of the architectural view alternatives, if you have

the freedom to do that. Next you must create an interpretation of the IISF that maps to

the architecture to which you have chosen to conform to the elements of the IISF, for

example, identifying endpoints, connections, roles, assets needing protection, etc.

6.3.3 Abstract Platform for SAFIRE Security Implementation

Each industrial SAFIRE deployment will have its own security problem12. Since

SAFIRE is an “add-on” capability that will operate within the context of an existing

system that is already built and managed by an IT and OT staff.

We will refer to this existing system as the abstract platform upon which SAFIRE

operates. It comprises the processing and networking hardware, the system and

networking software, the applications, and application support software (such as

DBMSs). Many of the components of the abstract platform are not developed by the

platform owner and operator, but are commercial third-party products or freely

available software. For convenience we will also consider the additional infrastructure

components upon which SAFIRE depends to become part of the abstract platform.

There will be a host of available security mechanisms provided by the abstract platform,

not all of which are used, some of which are overlapping, or redundant, or potentially

conflicting; and each having its own configuration mechanisms and enforcing its own

local policy.

We will define an Assume-Guarantee Contract between SAFIRE (generally, and the

SAFIRE Security Services in particular) and the abstract platform. SAFIRE will assume

certain features and functions to be provided by the abstract platform, and these things

12 We follow ISO 15408 in asserting that the security problem is defined by the threats, organizational
security policies, and environmental assumptions that are deemed to apply to a particular system, and the
derived security objectives that arise from these. The solution to the security problem is a set of security
requirements that meet all of the security objectives.

D5.6 Integrated Methodology

Page 102 Version 1.0 25 October 2019

Confidentiality: Public Distribution

in turn are ostensibly guaranteed by the abstract platform. This assume-guarantee

contract allows the separation of responsibilities for the abstract platform‟s realisation

from that of functions specifically developed as part of SAFIRE. By making SAFIRE‟s

assumptions explicit, the platform‟s guarantees are partial requirements on the platform

that can serve notify the platform owner/operator of what must be provided, and as a

basis for assessing the suitability of a provided platform for hosting SAFIRE.

As will be seen, many of the SAFIRE Security Services corresponding to conventional

security functional requirements will be allocated to the abstract platform, while

something representing the unique contributions of SAFIRE to the state-of-the-art with

respect to security, i.e. the unifying policy of NGAC, will be allocated to the SAFIRE

security implementation.

6.3.4 Security Building Blocks

The IISF functional viewpoint includes the identification of the functional building

blocks of the security framework, illustrated in Figure 50. The figure depicts three

layers, the upper layer representing four core security functions: endpoint protection,

communications and connectivity protection, security monitoring and analysis, and

security configuration and management. These functions are in turn supported by the

data protection functions of the second layer and a security model and policy functions

of the third layer.

Figure 50: IISF functional building blocks

6.3.5 Mapping IISF to system architecture and its implementation

The IISF establishes first a generic mapping, shown in Figure 51, from the security

framework‟s functional viewpoint, to the IIRA Functional View and then to the IIoT

System View, which includes both operational technology (OT) and information

technology (IT) and their interconnects.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 103

Confidentiality: Public Distribution

Figure 51: IISF to IIRA to IIoT system mapping

We will employ this mapping approach to demonstrate the adequacy of security

functions in the SAFIRE architecture and its deployment in an actual system,

identifying the elements of the SAFIRE implementation and the abstract platform that

correspond to the IISF functional elements. There will often be numerous options for

how the security functions can be provided and we do not intend to unnecessarily

prejudice or constrain choices among those options. Our objective is to provide the

generic mapping and the implementation principles to be applied in making choices for

the realization of security functions in actual systems and to provide guidance to help

achieve a consistent and coherent set of choices.

Section 6.3.8 presents a detailed example mapping between NGAC and the IISF

security functional building blocks.

D5.6 Integrated Methodology

Page 104 Version 1.0 25 October 2019

Confidentiality: Public Distribution

6.3.6 Application of the IISF to SAFIRE platform and Security Services

The IISF identifies many different security practices and mechanisms that must be

applied to an IIoT system. It provides excellent guidance in the effort to obtain

completeness of security coverage.

The IISF functional building blocks are intended to address security across all the

functional domains of the Industrial Internet Reference Architecture (IIRA), from end-

to-end from edge to cloud.

6.3.6.1 IISF-SAFIRE Security Services and Abstract Platform Correspondence

We intend to develop a correspondence of IISF functional building blocks to the

SAFIRE Architecture and to the SAFIRE Abstract Platform. The SAFIRE Architecture

was presented in deliverable D1.4. The SAFIRE Abstract Platform is the sum total of

operating environment, network, and application components that SAFIRE technology

depends upon.

The IISF-SAFIRE Security Services and Abstract Platform Correspondence will

provide a mapping from the elements of the IISF functional building blocks to the

SAFIRE Security Services and the SAFIRE Abstract Platform.

The Correspondence will identify the needed IISF elements and define them in terms of

SAFIRE Security Services and SAFIRE Abstract Platform. During the process of

developing the Correspondence, as the use cases and the SAFIRE Architecture are

implemented, there will be opportunities and motivation for clarification and refinement

of the Correspondence.

In the case of some IISF functional components the mapping will be made to security

features of the SAFIRE Abstract Platform. Some portions may also be made to

operational security procedures rather than technical mechanisms.

Functions that must be provided by security procedures, by the operating

environment(s) of the Abstract Platform, or by third party products integrated as part of

a specific use case will be noted as Assumptions on the Abstract Platform. This

designation is also used as the default, if it has not yet been determined whether a

component of the SAFIRE Security Services will satisfy the requirement.

6.3.7 Further Applications of SAFIRE’s NGAC-based security services

The IISF highlights the foundational role of security model and policy in its functional

viewpoint. Critical aspects of this role may be addressed by NGAC.

NGAC has the potential to be applied in several areas identified by the IISF. Its primary

application is data protection – access control security policy at endpoint systems. It can

also provide integrity protection at the endpoints.

There are several secondary potential areas of application of NGAC within the IISF

functional framework: configuration & management data protection, communications

data protection, and monitoring data protection. It can also be used to protect its own

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 105

Confidentiality: Public Distribution

policy configuration data. See Section 6.3.8 for additional insight into other applications

of NGAC.

6.3.8 Mapping of NGAC to IISF Security Functions

The IISF covers virtually all aspects of security, both technical (that is, mechanisms that

are implemented as hardware and/or software) and non-technical (that is, policies,

procedures, and practices). Figure 52 shows the functional viewpoint of the IISF as six

interacting building blocks, organized as three layers. The top layer represents the four

core security functions, which are in turn supported by a data protection layer and a

security model and policy layer.

Figure 52: Functional Building Blocks of the IISF

6.3.8.1 Overview of NGAC applicability in the IISF

NGAC is concerned with security model and policy, so in Figure 53 we indicate, is a

very coarse way, the role of NGAC relative to the functional building blocks of the

IISF. In this and subsequent figures a solid green ellipse indicates a primary role, while

a dashed ellipse indicates a secondary or optional role.

Figure 53: Overview of NGAC role in IISF functional building blocks

D5.6 Integrated Methodology

Page 106 Version 1.0 25 October 2019

Confidentiality: Public Distribution

6.3.8.2 Security model and policy

Figure 54 illustrates role of NGAC within the functional breakdown for the security

model and policy within IISF. The left side of this figure, Security Policy, is primarily

non-technical and refers to organizational security goals and objectives. The right side,

Security Model, is the technical aspect. NGAC is a technical measure providing security

policy (mode) specification and enforcement. Thus, we show the emphasis of NGAC on

the technical side. NGAC provides the capability to express and enforce a security

model primarily at the end points. However, since NGAC is distributed, it depends on

communications security. However, it is not primarily used to express or enforce

communications and connectivity security policy as described by the NGAC standard.

The following analysis will present a more refined explanation of the role of NGAC in

the IISF.

Figure 54: Overview of NGAC role in IISF security model and policy functional breakdown

6.3.8.3 Endpoint protection

Figure 55 shows the IISF functional breakdown for endpoint protection and the role that

NGAC can play in endpoint data protection. NGAC is not currently supported natively

within ubiquitous operating systems, e.g. through a “pluggable authorization module.”

The current feasible deployments of NGAC depend on the endpoint‟s operating system

to provide the basic security properties of isolation and integrity for the resources that it

exports, and which are placed under the NGAC scope of control. Thus, the role of

endpoint security model and policy is shared with the operating environment (OE); for

this reason a dashed ellipse is used to indicate NGAC‟s role in this aspect. NGAC can

provide fine-grained access control to OE-exported resources, and can thus provide

fine-grained integrity protection, in the sense of “no unauthorized modification”, for

objects under its scope of control.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 107

Confidentiality: Public Distribution

Figure 55: NGAC role in endpoint protection

6.3.8.4 Communication and connectivity protection

Concerning communication and connectivity protection, the functional breakdown of

which is illustrated in Figure 56, NGAC does not have a primary role as it is defined in

the NGAC standard. It could be used to model permissions for endpoints to

communicate, and we are investigating the use of NGAC‟s policy modelling

capabilities to represent information flow control, but other aspects of communication

security are outside the scope of NGAC.

Figure 56: NGAC role in communication and connectivity protection

D5.6 Integrated Methodology

Page 108 Version 1.0 25 October 2019

Confidentiality: Public Distribution

6.3.8.5 Security monitoring and analysis

Figure 57 illustrated the IISF functional breakdown of security monitoring and analysis.

NGAC does not cover this aspect of security. It is conceivable that NGAC could play a

supporting role for this aspect, depending on the level of abstraction at which

monitoring is conceptualized and implemented, by protecting monitoring resources and

granting use of those resources to monitoring agents. In this regard, monitoring is like

NGAC itself because of its dependence on the operating environment to provide the

underlying allocation of protection of resources used for monitoring. Whether

monitoring resources are placed within the NGAC scope of control could be influenced

by the consideration whether monitoring and its resources should be part of the overall

access control policy, or whether it should be treated as a distinct subsystem from

NGAC.

Figure 57: NGAC role in monitoring and analysis

6.3.8.6 Security configuration and management

Figure 58 shows the application of NGAC in the context of the IISF‟s functional

breakdown for security configuration and management. The primary application of

NGAC is its natural role in controlling changes to security policy models as is

recommended for NGAC-based enforcement mechanisms. It can also potentially be

used for configuration and management data protection if effectively integrated with the

operating environment and other management functions. NGAC could also be used for

change control of security configuration data used by other security enforcement

mechanisms, thus further unifying security management.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 109

Confidentiality: Public Distribution

Figure 58: NGAC role in security configuration and management

6.3.8.7 Data protection

Figure 59 shows the role of NGAC in the functional breakdown of data protection. The

primary application of NGAC is to provide security model and policy for endpoint data

protection; this is NGAC‟s raison d’être. Because NGAC is not yet integrated into the

operating environment, current NGAC implementations leverage the OE to build

mechanisms that enforce NGAC policies. As mentioned with respect to security

configuration and management, NGAC can be used to protect all manner of operational

and security-related data, including communications-related data, configuration data,

and monitoring data. With appropriate policies and extensions to enforcement

mechanisms, NGAC can address a slice of data protection across the system, including

data-at-rest (DAR), data-in-use (DIU), and data-in-motion (DIM), providing a higher-

level abstraction of protections provided by the operating environment and the network

hardware and software.

Figure 59: NGAC role in data protection

D5.6 Integrated Methodology

Page 110 Version 1.0 25 October 2019

Confidentiality: Public Distribution

6.3.8.8 Refined role of NGAC in the IISF

Having examined the role, and potential roles, of Next Generation Access Control in

various aspects of security within the Industrial Internet Security Framework, we now

present in Figure 60 a refined view of NGAC‟s roles in the functional breakdown for

security model and policy. Previously, in Figure 54 we identified in a broad sense the

applicability of NGAC as centering on data protection security policy, endpoint security

policy, and security model.

Figure 60: NGAC role in security model and policy refined

Here we assert NGAC‟s forte as the expression of data protection policies, providing a

formal framework for policy models, an interpretation mechanism and a distributed

enforcement framework in its reference implementations. We call attention to the fact

that the language of the IISF is somewhat nuanced in its distinction between security

policy and security model, using “security policy” to refer to informal organizational or

regulatory policy, and “security model” to refer to the more precise and machine

process-able representations that NGAC refers to a “policy specification”. In this sense,

NGAC provides security model and enforcement, but only for those resources that are

placed under its scope of control through an appropriate configuration of the underlying

protection mechanisms of the operating environment.

From the standpoint of policy specification, the NGAC framework can be used to

express abstract policy models of communications and connectivity security policies

and protection of non-NGAC security-related data. As we have described in the

foregoing presentation, such applications may include configuration & management

security policy, monitoring & analysis security policy, communications & connectivity

security policy, in addition to endpoint security policy. The mechanisms needed to

enforce such additional policies must be provided in and NGAC-compatible way by

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 111

Confidentiality: Public Distribution

creating policy enforcement points (PEPs) appropriate to the new resources and

appropriate resource access points (RAPs) for those resources. These PEPs may call

upon the NGAC policy decision point(s) (PDPs) to render access control verdicts based

on the policies stored in the policy information point (PIP).

D5.6 Integrated Methodology

Page 112 Version 1.0 25 October 2019

Confidentiality: Public Distribution

7. CONCLUSIONS

In order to enhance information management in the Manufacturing domain, SAFIRE

offers a solution for big data analysis and situation-based process optimisation. To this

extend, the steps to adapt and extend the SAFIRE platform to meet the business case

requirements where collected and described in the integrated methodology presented in

this document.

The methodology for the SAFIRE platform can be arranged in four groups of steps,

focusing on BC analysis and scenario definition, BC customisation, platform

integration, and platform testing and release. As first step, the business-specific

requirements are being defined, and in the second step are being applied to the technical

part of the platform, namely the SAFIRE services and modules. In the third step, all the

modules configured for the business case are being connected to work together as an

integrated system which is being tested and accordingly optimised in the business sites

for the last step. The observation of the results from the platform released version is

being observed using the SAFIRE monitoring dashboard.

Additionally, the SAFIRE methodology describes in detail the individual steps to adapt

the four modules, namely the Predictive Analytics (PA), the Situation Determination

(SD), the Optimisation Engine (OE) and the Security Framework (SPT). Some of the

main aspects of the customisation needed on the modules are the data sources and

samples for the PA, the situation model for SD, the optimisation metrics and fitness

functions for OE, and the privacy rules for the SPT.

The integrated methodology described in this document, aims to support the experts

from a given industrial company (industry experts), to employ technical stuff (SAFIRE

experts) able to customise the SAFIRE services for the selected business needs in order

to interact with the industrial legacy systems. It aims to provide an easy to follow,

stepwise, workflow to accompany all the interest-to-SAFIRE-solution-parties from the

business conceptualisation and specification, to the implementation, testing and release

of a business tailor SAFIRE platform.

 D5.6 Integrated Methodology

25 October 2019 Version 1.0 Page 113

Confidentiality: Public Distribution

8. REFERENCES

1. University of York, Methodology for Dynamic and Predictable Reconfiguration and Optimisation Engine,

SAFIRE project deliverable D3.1. 2018.
2. Dziurzanski et al, Piotr Dziurzanski, Jerry Swan, Leandro Soares Indrusiak. Value-Based Manu-facturing

Optimisation in Serverless Clouds for Industry 4.0. 2018.

3. Mendez et al, Carlos A. Méndez, Jaime Cerdá, Ignacio E. Grossmann, Iiro Harjunkoski, Marco Fahl. State-of-

the-art review of optimization methods for short-term scheduling of batch pro-cesses, Computers & Chemical

Engineering, Volume 30. 2007.

4. Allen, James F. Maintaining knowledge about temporal intervals. 1983.

5. University of York, Early Specification of Dynamic and Predictable Reconfiguration and Optimisation

Engine, SAFIRE project deliverable D3.2. 2018.

6. University of York, Optimisation Metrics and Benchmarking, SAFIRE project delivera-ble D1.2. 2017.

7. Deb et al., K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. A fast and elitist multiobjective genetic algorithm.

2002.

8. Zhang and Li, Li, Q. Zhang and H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition.

2007.

9. Dziurzanski et al, Piotr Dziurzanski, Shuai Zhao, Jerry Swan, Leandro Soares Indrusiak, Sebastian Scholze,

Karl Krone. Solving the Multi-objective Flexible Job-Shop Scheduling Problem with Alternative Recipes for a

Chemical Production Process. 2019a.

10. Burkimsher et al, Andrew Burkimsher and Leandro Soares. Bidding policies for market-based HPC workflow

scheduling. 2016.

11. Marcus et al, Darin Marcus and Laron Colbert. $EE, the Financial Aspect of OEE. 2015.

12. Stoer et al, J. Stoer, R. Bartels, W. Gautschi, R. Bulirsch, and C. Witzgall. Introduction to Numerical Analysis.

2002.

13. Yin et al, Hao Yin, Huilin Wu, and Jiliu Zhou. An improved genetic algorithm with limited iteration for grid

scheduling. 2007.

14. Di Martino et al, Di Martino, S., Ferruci, F., Maggio, V., Sarro, F. Towards migrating genetic algorithms for

test data generation to the cloud. 2012.

15. Leclerc, G., Auerbach, J.E., Iacca, G., Floreano, D. The seamless peer andcloud evolu-tion framework. 2016.

16. Ma et al, Ma, N., Liu, X.F., Zhan, Z.H., Zhong, J.H., Zhang, J. Load balance awaredistributed differential

evolution for computationally expensive optimization problems. 2017.

17. Melab et al, Melab, N., Mezmaz, M., Talbi, E. Parallel hybrid multi-objective islandmodel in peer-to-peer

environment. 2005.

18. Nogueras et al, Nogueras, R., Cotta, C. An analysis of migration strategies in island-basedmultimemetic

algorithms. 2014.

19. Ishibuchi et al, Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y. Modified distance calculation in

generational distance and inverted generational distance. 2015.

20. Deb et al., Deb, K., Agrawal, S., S., Pratap, Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm

for multi-objective optimization. s.l. : Springer, 2000.

21. Zhao et al, Shuai Zhao, Haitao Mei, Piotr Dziurzanski, Michal Przewozniczek and Leandro Indrusiak.

Cloud-based Integrated Process Planning and Scheduling Optimisation via Asynchronous Islands. 2019a.

22. SAFIRE D5.8, 2019, Institut für angewandte Systemtechnik Bremen GmbH, Final Integrated Cloud Analysis

and Reconfiguration Platform, SAFIRE project deliverable D5.8. 2019.

23. Zhao et al, Shuai Zhao, Piotr Dziurzanski, and Leandro Indrusiak. An XML-based Factory Description

Language for Smart Manufacturing Plants in Industry 4.0. In International Workshop on Reconfigurable and

Communication-centric Cyber-Physical Systems. 2019b.

24. Ryan et al, Ryan C., Collins J., Neill M.O. Grammatical evolution: Evolving programs for an arbitrary language.

1998.

25. Dziurzanski et al, Piotr Dziurzanski, Robert Davis and Leandro Indrusiak. Synthesizing Real-Time

Schedulability Tests using Evolutionary Algorithms: A Proof of Concept. 2019b.

26. InterNational Committee for Information Technology Standards, Cyber security technical committee 1.

Information technology—Next Generation Access Control—Functional Architecture. ANSI INCITS 499-2018.
2018.

27. InterNational Committee for Information Technology Standards, Cyber security technical committee 1.

Information technology—Next Generation Access Control—Generic Operations & Abstract Data Structures.

ANSI INCITS 526-2016. 2016.

D5.6 Integrated Methodology

Page 114 Version 1.0 25 October 2019

Confidentiality: Public Distribution

28. InterNational Committee for Information Technology Standards, Cyber security technical committee 1.

Information technology—Next Generation Access Control— Implementation Requirements, Protocols and API

Definitions. ANSI INCITS 525-2018. 2018.

29. International Standards Organization, Geneva, Switzerland. International Standard 15408-1: Common Criteria

for Information Technology Security Evaluation—Part 1: Introduction and general model, Version 3.1

Revision 4, CCMB-2012-09-001. 2012.

30. International Standards Organization, Geneva, Switzerland. International Standard 15408-2: Common Criteria

for Information Technology Security Evaluation—Part 2: Security functional components, Version 3.1

Revision 4, CCMB-2012-09-002. 2012.

31. International Standards Organization, Geneva, Switzerland. International Standard 15408-3: Common Criteria

for Information Technology Security Evaluation—Part 3: Security assurance components, Version 3.1 Revision

4, CCMB-2012-09-003. 2012.

32. Industrial Internet Consortium. Industrial Internet of Things, Volume G4: Security Framework,

IIC:PUB:G4:V1.0:PB:20160919. 2016.

33. Industrial Internet Consortium. Industrial Internet of Things, Volume G1: Reference Architecture,

IIC:PUB:G1:V1.80:20170131. 2017.

