

Project Partners: ATB, Electrolux, IKERLAN, OAS, ONA, The Open Group, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SAFIRE Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the SAFIRE Project Partners.

Project Number 723634

D3.5 Final Specification of Dynamic and Predictable
Reconfiguration and Optimisation Engine

Version 1.0

18 October 2018

Final

EC Distribution

University of York

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page ii Version 1.0 18 October 2018

Confidentiality: EC Distribution

PROJECT PARTNER CONTACT INFORMATION

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Electrolux Italia

Claudio Cenedese

Corso Lino Zanussi 30

33080 Porcia

Italy

Tel: +39 0434 394907

E-mail: claudio.cenedese@electrolux.it

IKERLAN

Trujillo Salvador

P Jose Maria Arizmendiarrieta

20500 Mondragon

Spain

Tel: +34 943 712 400

E-mail: strujillo@ikerlan.es

OAS

Karl Krone

Caroline Herschel Strasse 1

28359 Bremen

Germany

Tel: +49 421 2206 0

E-mail: kkrone@oas.de

ONA Electroerosión

Jose M. Ramos

Eguzkitza, 1. Apdo 64

48200 Durango

Spain

Tel: +34 94 620 08 00

jramos@onaedm.com

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of York

Leandro Soares Indrusiak

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325 570

E-mail: leandro.indrusiak@york.ac.uk

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page iii

Confidentiality: EC Distribution

DOCUMENT CONTROL

Version Status Date

0.1 First draft of the document. 20 August 2018

0.4 Added description of Factory Description Language. 15 September 2018

0.5 Added description of configuration deployment 17 September 2018

0.6 Update of the requirements coverage table 28 September 2018

0.7 Added relation to the generic ontology for modelling correlation 04 October 2018

0.8 Version sent to internal review 05 October 2018

0.9 Version after revision 12 October 2018

1.0 Final version 18 October 2018

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page iv Version 1.0 18 October 2018

Confidentiality: EC Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Progress beyond D3.2 Early Specification of Dynamic and Predictable Reconfiguration and Optimisation

Engine ... 2

2. Capabilities to be developed ... 2

2.1 Metrics API.. 3

2.2 Optimisation/Reconfiguration Engine ... 3

2.3 Objective Function .. 3

3. Capability State of the Art ... 3

3.1 Metrics API.. 3

3.2 Optimisation Engine .. 4

3.3 Objective Function .. 5

4. Capability New technologies / innovations .. 6

4.1 Metrics API.. 6

4.2 Optimisation Engine .. 6

4.3 Objective Function .. 7

5. Interface Specifications ... 8

5.1 Metrics API.. 8
5.1.1 Configuration Specification .. 8

5.2 Configuration Schema Interface .. 9

5.3 Optimisation Engine Interface... 11

5.4 Objective Function Interface ... 11

6. End-User Configuration ... 12

6.1 Suitable Pre-existing Objective Function .. 12

6.2 No Suitable Pre-existing Objective Function .. 12
6.2.1 Explicit description of the Objective Function. .. 12
6.2.2 Predicted Objective Function from analysis of process data... 13

6.3 Plant Description for the Optimisation and Reconfiguration Purpose ... 13
6.3.1 Optimisation and Reconfiguration Generic Ontology ... 13
6.3.2 Factory Description Language .. 18

6.4 OE and OF deployment ... 22
6.4.1 Dynamic and scalable orchestration .. 22
6.4.2 OE configuration ... 24
6.4.3 OF configuration ... 25
6.4.4 Cooperation with other SAFIRE modules .. 26
6.4.5 Implementation of the SAFIRE security framework .. 28

7. BUSINESS USE CASES ... 31

7.1 Explicit description of the Objective Function Example - OAS Use case.. 31

7.2 Explicit description of the Objective Function Example - ONA use case .. 32

7.3 Predicted Objective Function from analysis of process data - Electrolux use case ... 33

8. Requirements coverage (table) ... 34

8.1 Reconfiguration ... 34

8.2 Optimisations... 35

8.3 Performance .. 35

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page v

Confidentiality: EC Distribution

8.4 Interfaces ... 36

8.5 Communications .. 36

8.6 Hardware/Platform/Devices .. 37

9. References .. 38

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page vi Version 1.0 18 October 2018

Confidentiality: EC Distribution

EXECUTIVE SUMMARY

This document specifies the full prototype of the Reconfiguration and Optimisation

Engine component of the „SAFIRE‟ project. The key concepts underlying component

dependencies are described, and the corresponding interfaces are specified. The

mechanisms supporting genericity are specified, together with concrete relationships

to Business Cases. Descriptions are given of requirements coverage and extensions to

existing research/technologies. The progress beyond the early prototype of the same

component is explained.

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 1

Confidentiality: EC Distribution

1. INTRODUCTION

The goal of the Reconfiguration and Optimisation Engine is to provide scalable, high-

quality reconfiguration of industrial systems/manufacturing processes.

Such optimisation has been extensively studied in Operations Research and Computer

Science for over half a century [Papadimitriou and Steiglitz, 1982], and the essential so-

lution methods are well understood academically and have been widely used in indus-

try.

Optimisation is concerned with finding good solutions to problems that can be formu-

lated in a specific manner. Such formulations have two essential ingredients:

1. A specification that implicitly describes all potential solutions to the problem.

This is known as the state space of the problem.

2. A specification of some numerical quality measure for a proposed solution. This

is known as the objective function or fitness function: a value to be maximised or

minimised, depending on the problem at hand. (In this documents, the terms ob-

jective and fitness function are used interchangeably.)

The traditional example of an optimisation problem is the well-known Travelling Sales-

person Problem (TSP): given a list of cities [Papadimitriou and Steiglitz, 1982], each of

which should be visited exactly once, optimise the order in which these cities are visit-

ed, so as to minimise the total distance travelled. The state space of the problem consists

of all possible re-orderings of the list of cities. The obvious quality measure of a pro-

posed reordering is just the associated distance travelled. The TSP is just one example

of a very wide range of problems that can be formulated in this way: in particular, man-

ufacturing process problems such as Job Shop/Flow Shop/Open Shop scheduling have

been represented in this way and studied since the inception of optimisation methods.

Such problems are not in general easy to solve: for example, as the number of cities is

increased, so the number of possible solutions to the TSP increases in a „bigger than ex-

ponential‟ manner. This „exponential complexity‟ is shared by problems in manufactur-

ing process optimisation: it soon becomes impossible for even the fastest supercomputer

(or even any future computer) to consider all possible solutions and pick the best one.

Optimisation has therefore been strongly concerned with the development of heuristics

[Burke et al, 2003]: methods which produce solutions which are “good enough, fast

enough, cheap enough” even though they consider only a tiny fraction of all possible

solutions.

Over the last 40 years, many different heuristics approaches have been proposed in the

scientific literature and subsequently compared in both laboratory conditions and real-

world applications. An example of a heuristic approach that have proved ubiquitously

successful is Genetic Algorithms [Holland, 1992]: based on notions of “survival of the

fittest” from Darwinian evolution, potential solutions are selected (in proportion to their

quality) from a population of solutions – selected solutions are then subject to crossover

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 2 Version 1.0 18 October 2018

Confidentiality: EC Distribution

(analogous to genetic crossover of DNA, in which parts of a pair of solutions are com-

bined to create a new solution) and mutation (analogous to the random mutations which

occur in nature). The mutated solutions (which heuristically tend to be of better quality)

are then incorporated into the population for subsequent evaluation. This process (of

creating successive „generations‟ of the population) repeats until a solution of sufficient

quality is found (or else some other budgetary condition is reached). Since its invention

in 1976, the method has been extensively studied and applied in many thousands of ap-

plications. One of the particular advantages of Genetic Algorithms is that they have

high genericity across different types of problem: they tend to perform reasonably well

even if the model of the process to be optimised is not highly detailed.

1.1 PROGRESS BEYOND D3.2 EARLY SPECIFICATION OF DYNAMIC AND

PREDICTABLE RECONFIGURATION AND OPTIMISATION ENGINE

This specification is consistent with deliverable D3.2 Early Specification of Dynamic

and Predictable Reconfiguration and Optimisation Engine [SAFIRE D3.2, 2018] and

includes the majority of its content. The main additions to D3.5 are:

 specification of the objective function configuration by means of Optimisation

Engine Configurator,

 deployment configuration description, in particular including the architecture of

co-operating containers executing distributed evolutionary algorithms (support-

ing so-called island mode),

 relation to the SAFIRE security framework,

 optional execution of predictive analytics, as developed in WP2, to evaluate the

value of solutions alternatively to the automatically generated OF,

 update of the requirements coverage table in Section 8.

The „Optimisation Engine Configurator‟ will generate both Configuration and Objective

Function corresponding to the manufacturing process model selected/specified by the

end user (e.g. Interval or Max-plus algebra: see deliverable D3.1 [SAFIRE D3.1, 2018]

for a detailed description of Max-plus and Interval Algebras). Since both the Objective

Function and the Metrics API are planned to be generated from the specification in the

proposed Factory Description Language (FDL), the appropriate descriptions for all

SAFIRE BCs are provided.

2. CAPABILITIES TO BE DEVELOPED

The key deliverable for York is the provision of the Optimisation and Reconfiguration

Engine (OE) component of SAFIRE, responsible for real-time process reconfiguration

on demand. The overall specification of capability to be delivered by York is most read-

ily explained via a division into three component parts: the Metrics API, Optimisation

Engine and Objective Function (OF). These are specified in more detail below, at first

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 3

Confidentiality: EC Distribution

informally, then in terms of their formal parameters and detailed capabilities. Require-

ments coverage of these components can be found towards the end of the document.

2.1 METRICS API

The Metrics API provides a complete schema description for the variables associated

with process configuration. Taken together, these variables define the state space, as de-

fined in the introduction, above. As specified in deliverable D1.2 [SAFIRE D1.2, 2017],

the elements of the configuration data schema are termed metrics, i.e. either measurable

physical values corresponding to industrial process sensors or else key objective (quali-

ty) measures derived from these.

2.2 OPTIMISATION/RECONFIGURATION ENGINE

The key capability of the Optimisation and Reconfiguration Engine (Optimisation

Engine, hereafter) is the ability respond to dynamic reconfiguration requests.

Functionally, the Optimisation Engine takes as input a configuration (an instantaneous

description of the manufacturing process) as specified by the Metrics API, and outputs a

reconfiguration containing the proposed control values to be applied to the process. In

accordance with the description of optimisation given in the introduction: the proposed

reconfiguration is one that is of high quality, as determined by the Objective Function.

2.3 OBJECTIVE FUNCTION

As described above, the Objective Function is the means by which the Optimisation

Engine is informed of the quality of a proposed reconfiguration. The term Objective

Function is well-known in Operations Research [Gendreau and Potvin, 2010], having

been widely used for well over half a century.

3. CAPABILITY STATE OF THE ART

3.1 METRICS API

The Metrics API has been implemented by York as a means of defining and represent-

ing processes, serving as a basis for interoperability and communication between the

Optimisation Engine and other parts of the SAFIRE system that need access to it. The

API is implemented in the Java programming language. Support is provided for auto-

matic serialisation to/from the popular human-readable JSON protocol. Support has also

been implemented for sending/receiving serialised JSON over http.

In contrast to the genericity provided by the Metrics API (see Section 4.1, below), there

is little in the state of the art for representing optimisation problems in a domain-

independent manner. Indeed, the only initiative of which we are aware [Kronberger et

al, 2013] is directly tied to a specific choice of optimisation algorithm (viz., Grammati-

cal Evolution), which would be overly constraining for the SAFIRE implementation. In

the absence of a generic method of representing (the state space of) problems, it is typi-

cal that the optimiser is configured a) using expert labour and b) by writing program

code to represent problem specifics. Our proposed approach avoids the necessity for

this, being instead schema-driven. In particular, being able to interoperate instances of

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 4 Version 1.0 18 October 2018

Confidentiality: EC Distribution

this schema directly via JSON over HTTP facilitates the federated hosting of solvers in

the cloud that is a key part of the SAFIRE remit.

3.2 OPTIMISATION ENGINE

SAFIRE represents progress towards the „Smart Factory‟ notion of “Industry 4.0”. In

contrast to third generation manufacturing systems, the notion is that manufacturing

processes will operate in `just-in-time' mode, being rapidly responsive to the dynamic

arrival of manufacturing orders. It is anticipated [Chen et al, 2017] that such factories

will have a set of highly configurable machines with automated material handling sys-

tems and a cloud-based management system.

More specifically, a key motivation for cloud-based optimisation is that part of the

SAFIRE remit is for the Optimisation Engine to operate „with predictable upper bounds

on execution time‟. Combining such „Worst Case Execution Time‟ guarantees with me-

taheuristic search draws on expertise particular to the University of York‟s Real-time

Systems research group. By virtue of a cloud-based architecture (Section 6.4), optimisa-

tion can be scaled (by federating the workload over a larger number of computers) to

solve larger problems or produce quality results more quickly.

Unlike SAFIRE, the current state-of -the-art in cloud-based optimisation is not typically

concerned with execution-time guarantees. In addition (in contrast to our recent applica-

tion of the Optimisation Engine [Dziurzanski et al, 2018]), we are not aware of any as-

sociated case studies for OEE.

A recent position paper [Salza et al, 2016] presents a conceptual workflow for the de-

ployment and execution of distributed Genetic Algorithms (GAs), one of the most wide-

ly used search-based meta-heuristics for optimisation. The software container technolo-

gy (Docker) and a lightweight Linux distribution created to execute containers (Core-

OS) has been used for large and scalable deployments on different infrastructure, focus-

ing on security, consistency and reliability. This idea has been further extended in Salza

et al [Salza et al, 2017], where evolutionary machine learning classifiers have been de-

ployed to the cloud. In the proposed solution, a similar architecture is used for perform-

ing evolutionary optimisation. In particular, Docker containers are used to execute in-

stances of jMetal [Durillo and Nebro, 2011], a popular Java framework offering a varie-

ty of algorithms for single- and multi-objective metaheuristic optimisation.

In Ma et al [Ma et al, 2017], a master-slave topology implementing a distributed evolu-

tion algorithm was employed. The master assigned the individuals from each generation

to the slave nodes based on their load information and then collected the corresponding

fitness values. The comparison with allocation of the same number of individuals to

each node has been conducted for 32, 48 and 64 nodes. The obtained improvement of

the computation time has ranged from 6% to 39% depending on the cluster size. While

shortest time was achieved for the largest case, the strategy proposed in that paper has

not considered heterogeneous architecture or various communication costs. The pro-

posed solution also takes communication overhead into consideration. Since the pro-

posed approach uses load balancers as detailed later in this document, the number of

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 5

Confidentiality: EC Distribution

nodes is decided dynamically between pre-defined boundaries. Leclerc et al [Leclerc et

al, 2016] propose a cloud-based framework facilitating large scale evolutionary experi-

ments. Their framework provides a master-slave architecture, with nodes communi-

cating via JSON over HTTP. The applied scheduling policy aims to uniformly spread

the load across peers. The slave node with minimal load is chosen for each incoming

fitness function evaluation task. There is no possibility of sharing processing units be-

tween tasks. Consequently, if there is no slave with an idle processing unit, the task is

placed in a FIFO queue. To guarantee the appropriate amount of computing resources,

the framework is intended to be executed on virtual machines (VMs) whose number is

steered by the cloud provider, using facilities such as Amazon Auto Scaling Group.

When the smoothed expected time to empty the queue is larger or smaller than certain

thresholds, a VM is added or removed, respectively. The motivation for the container-

based approach is to provide both scalability and cost-effectiveness: payment is made

only for actual replicated containers. In future, the serverless approach can be applied

instead if the limits regarding the maximal execution time or memory footprints will be

lowered by the major public cloud vendors. The current limits have been provided in

SAFIRE deliverable D3.1 [SAFIRE D3.1, 2018] together with the requirements regard-

ing the cloud platform.

3.3 OBJECTIVE FUNCTION

In order to determine the quality of a proposed reconfiguration, the Optimisation Engine

requires some form of model of the system to be optimised.

The prevalent approach in optimisation is for the system to be explicitly modelled (typi-

cally in a mathematical form) by potentially lengthy and costly collaboration between

optimisation experts (often academics) and experts for a specific Business Case.

In specific problem areas, some efforts have been made to reduce the necessity for do-

main experts by providing dedicated configuration tools. Such tools provide a prede-

fined, problem-specific Objective Function and associated model, aspects of which can

be modified by someone familiar only with the practicalities of the process. Such modi-

fication may be done via a human-readable textual description or GUI. One example of

a commercial package of this nature is RosterViewer

(http://www.staffrostersolutions.com), applicable to personnel scheduling problems.

Such tools are built with expert knowledge and are restricted to particular problem are-

as. In contrast, the role of the Objective Function within SAFIRE is to support a diverse

range of manufacturing processes in a manner that is as problem agnostic as possible.

Since this has implications for „End User Configuration‟, the supported options for this

are discussed in more detail that Section.

http://www.staffrostersolutions.com/

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 6 Version 1.0 18 October 2018

Confidentiality: EC Distribution

4. CAPABILITY NEW TECHNOLOGIES / INNOVATIONS

4.1 METRICS API

Working in combination with the interface specifications of the Optimisation Engine

and Metrics API, the Objective Function is key to SAFIRE genericity, maximising the

ability to describe problems in a manner that is independent of Business Case specifics.

In accordance with the descriptions of D1.2 [SAFIRE D1.2, 2017], the Metrics API

supports a variety of different types of metric value types (integer, real-valued, nomi-

nal), and allows checkable constraints to be specified on their associated ranges. It also

allows the specification of process-specific quality indicators (the key objective metrics)

and whether they are to be maximised or minimised.

The Metrics API and the means by which such open ended support for Business Cases

is provided is described in more detail in the subsequent sections.

4.2 OPTIMISATION ENGINE

The capability of „predictable, dynamic response‟ is provided via a scalable, cloud-

based architecture for the Optimisation Engine.

The proposed optimisation process is implemented using a master-slave paradigm: the

master executing a single instance of OE awaits manufacturing orders. Upon arrival of

some observed change in plant configuration (e.g. arrival of a manufacturing order),

configuration data is sent to a certain number of slave nodes, where, at each stage, (an

instance of) the Objective Function is executed.

The current implementation of the Optimisation Engine uses a Genetic Algorithm (as

described in the Introduction Section), implemented within the jMetal framework

(https://github.com/jMetal) as well as the framework written in York in the course of

the SAFIRE project and placed inside a Docker container. This container acts as a

REST-compliant Web service, awaiting input in the form of a population of proposed

plant re-configurations to be optimised. On timeout, the container returns the best of

the proposed re-configurations. Communication between the master and slave nodes is

performed via JSON over HTTP.

A recent conference publication [Dziurzanski et al, 2018] describes the above in full

implementation detail, and gives experimental results showing successful application of

the scalable, serverless implementation of the Optimisation Engine to a ubiquitous class

of manufacturing problems, producing near-optimal solutions in terms of OEE. Howev-

er, as discussed in SAFIRE Deliverable D3.1 [SAFIRE D3.1, 2018], the current limits

related to the serverless container execution in the most popular public clouds are too

strict to execute OF and thus the only possibility to remain serverless for OF is to use

Apache OpenWhisk (https://openwhisk.apache.org), but this solution is mainly applica-

ble in private clouds. At the current moment of public cloud computing evolution, the

container services such as Amazon Elastic Container Service (ECS) or Amazon Elastic

Container Service for Kubernetes (EKS) are more appropriate to execute computation-

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 7

Confidentiality: EC Distribution

ally-intensive containers, as discussed in SAFIRE Deliverable D3.1 [SAFIRE D3.1,

2018].

Figure 1. Running multiple Optimisation Engines via Docker.

The architecture of the Optimisation Engine (Figure 1) allows to optimisers to be hier-

archically aggregated and/or federated across a distributed system to yield solvers of in-

creasing power. A recent research community initiative [Swan et al, 2015] advocates

this approach as being vital for large scale improvements in both research practice and

solver performance. In particular, the industrial application of these methods is novel.

There also novelty in using such a decomposition to create solver ensembles which are

both cloud-based and highly parallel [Dziurzanski et al, 2018].

4.3 OBJECTIVE FUNCTION

In contrast to the „always bespoke‟ approach described in the „Capability State of the

Art‟ approach, above, our approach to Objective Function definition is to provide a

range of options:

 The option to model a business case using a pre-existing model.

 The traditional bespoke option, as above.

As detailed in deliverable D3.1, two models (the „Max-plus‟ and „Interval‟ algebras) of

OF have been provided, which are applicable to a very wide range of production scenar-

ios. The Objective Function represents a key variation point for End-User customisa-

tion, and the attendant „End-User Responsibilities‟ for Business Case are detailed in the

corresponding Section.

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 8 Version 1.0 18 October 2018

Confidentiality: EC Distribution

5. INTERFACE SPECIFICATIONS

As described in [Dziurzanski et al, 2018], a preliminary version of the Optimisation

Engine is in operation, with interfaces as described below.

5.1 METRICS API

The reconfiguration process performed by the Optimisation Engine can be achieved in a

generic fashion, driven by a per-Business Case specific specification of:

 A Configuration Specification specifying the data schema for the system to be

optimised.

 A quality measure (known as an Objective Function) to determine the value of

the proposed reconfiguration.

These specifications also suffice to determine the interfaces by which the wider

SAFIRE system (most specifically, Situation Determination and Predictive Analytics)

communicate with the Optimisation Engine.

We now describe each in more detail.

5.1.1 Configuration Specification

The configuration schema is a complete description of the metrics by which the system

is observed, controlled and evaluated, in terms of their types (e.g. integer, real-valued,

string) and the associated valid ranges (e.g. 1-11,0.0-1.0, {“cool”,”warm”,”hot”} etc).

In SAFIRE Deliverable D1.2 [SAFIRE D1.2, 2017] these metrics were specified as be-

ing divided into 3 categories: „Observable Metrics‟; „Control Metrics‟ and „Key Objec-

tive Metrics‟. By way of example, the corresponding metrics for BC2-UC1 (OAS) are

given in Table 1-Table 3.

Table 1. Key Objective Metrics of Business Case BC2-UC1

Key Objective Metrics

Metric Unit Objective Description

performance % min Depends on the speed of the weighting process.

quality of dos-

ing

% max Target-actual comparison. The dosing should be precise. 100 % is opti-

mal.

OEE % max Combination of quality and performance

Table 2. Controlled Metrics of Business Case BC2-UC1

Controlled Metrics

Metric Unit Range Description

Auger conveyor

speed for coarse

dosing

RPM 0-max Set RPM of the auger conveyor Coarse Dosing mode

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 9

Confidentiality: EC Distribution

Auger conveyor

speed for fine dosing

RPM 0-max Set RPM of the auger conveyor Fine Dosing mode

Time frame for Au-

ger conveyor coarse

dosing

Sec 0-max Set time frame for coarse dosing

Time frame for Au-

ger conveyor fine

dosing

Sec 0-max Set time frame for fine dosing

Table 3. Observable Metrics of Business Case BC2-UC1

Observable Metrics

Metric Unit Sample rate Description

Scale weight Int

gram

sec The current weight measurement of a scale

Auger conveyor

speed

Int RPM sec The speed of the auger conveyor

Auger conveyor

status

Int sec Fine Dosing mode or Coarse Dosing mode or off

production step int 1-x Current production step of a production order. To identi-

fy if the weighting process is enabled

Kind of raw material String Sec Identify the kind of raw material currently in the

weighting process.

Amount of raw mate-

rial needed

kg One time for

each weighting

step

Amount of raw material which has to be weighed.

5.2 CONFIGURATION SCHEMA INTERFACE

In order to define the required inputs to the Optimisation Engine, York has developed a

„Metrics API‟, allowing the definition and validation of configuration schema. This API

is written in the Java programming language and is made available to all partners via the

SAFIRE Git repository. To ensure that remote invocation of the Optimisation Engine

can be performed in a consistent manner by all project partners, the classes of the Met-

rics API provide support for serialisation via JSON.

There are several dozen classes in the Metrics API. The key ones are given in the UML

diagram presented in Figure 2.

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 10 Version 1.0 18 October 2018

Confidentiality: EC Distribution

Figure 2. Class diagram of Metrics API

For summary purposes, the key aspects of the Metrics API can be described in terms of

the Configuration class, which is used as both input to and output from the Optimisation

Engine:

package uk.ac.york.safire.metrics;

public final class Configuration {

 public Configuration(ConfigurationType configurationType,

 Map<MetricName, Value > controlledMetrics,

 Map< MetricName, Value > observableMetrics,

 Map< MetricName, Value > keyObjectives);

 /* Other implementation details omitted... */

};

A Configuration is thus the Optimisation Engine‟s representation of a manufactur-

ing process, containing values for the controlled, observable and key objective metrics.

Each of these are indexed by name (Map<MetricName,Value>). Value is a vari-

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 11

Confidentiality: EC Distribution

ant record type, capable of representing either Integer, Real or String values (examples

of each can be seen in the Units columns of the BC2-UC1 metrics, above).

The ConfigurationType provides the associated configuration schema, i.e. the re-

quired types and ranges of the associated Values, thereby allowing runtime valida-

tion of a Configuration.

5.3 OPTIMISATION ENGINE INTERFACE

The Optimisation Engine can be invoked by other parts of the SAFIRE system via the

following simple API call:

interface OptimisationEngine {

 Configuration

 optimise(Configuration args);

}

Input: args -- a configuration with observable and Control metrics (D1.2 [SAFIRE

D1.2, 2017]) corresponding to the real-world physical state of the process to be opti-

mised.

Output: a high-quality proposed re-configuration: specifically, a configuration contain-

ing Control metrics to be applied to the real-world process. In order to relieve the in-

voker of the Optimisation Engine (e.g. other SAFIRE modules such as Situation Deter-

mination) from concerns implementation details, we provide a variety of alternative im-

plementations of the Optimisation Engine interface: for example allowing transparent

use of either locally hosted Optimisation Engines or ones hosted remotely via a Docker

container. In the latter case, the arguments and results to the call to optimise are au-

tomatically communicated via JSON over HTTP. The latter version will be used in the

full prototype of the Reconfiguration and Optimisation Engine.

5.4 OBJECTIVE FUNCTION INTERFACE

The long-established practice of optimisation proceeds by computationally generating

(potentially many thousands) of possible proposed reconfigurations, choosing high-

quality ones on the basis of some Business Case-specific quality measure. This quality

measure is traditionally known as an Objective Function. For SAFIRE purposes, we can

consider an Objective Function to be a function which assigns a numerical value to (the

control metrics of) a proposed configuration:

double valueOfReconfiguration(Configuration proposedReconfiguration);

BC-specific objective functions are made available to the Optimisation Engine via con-

figuration file at setup time (e.g. as output from the „OE Configurator Program‟ – see

Section 6 below for more details of the latter): as mentioned above, this can transparent-

ly be specified as either running locally (i.e. running within the same JVM as the Opti-

misation Engine) or remotely (i.e. using a designated service endpoint via JSON-over-

HTTP).

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 12 Version 1.0 18 October 2018

Confidentiality: EC Distribution

6. END-USER CONFIGURATION

We detail End-User configuration options from the perspective of the Optimisation En-

gine component:

As previously discussed, it is a necessity in computation optimisation for the optimiser

to be provided with an Objective Function: a means of evaluating configuration quality.

As described in SAFIRE Deliverable D3.1 [SAFIRE D3.1, 2018], we have provided

two associated process models (Max-Plus and Interval algebras) that can cover a wide

class of manufacturing problems, including specifically ONA and OAS Business Cases.

End-user configuration of SAFIRE for some other Business Case falls into one of two

main categories, depending on whether these pre-existing objective functions are suita-

ble:

6.1 SUITABLE PRE-EXISTING OBJECTIVE FUNCTION

Assuming that this new Business Case can be described in terms of the above models,

there is still a requirement for the end-user to explicitly define their process in terms of

one of the above models. In the Full Prototype of Reconfiguration and Optimisation

Engine, a standalone „OE Configurator Program‟ will be provided to facilitate this.

6.2 NO SUITABLE PRE-EXISTING OBJECTIVE FUNCTION

If the new Business Case cannot readily be described by the above models then there

are two options, with attendant pros and cons. These options are illustrated with suitable

uses cases defined by SAFIRE project industrial partners in Section 7.

6.2.1 Explicit description of the Objective Function.

This option is the one traditionally followed in optimisation and requires the objective

function to be described in explicitly mathematical terms. For example, as described in

the Introduction, the Objective Function for the well-known Travelling Salesman prob-

lem is the sum of the distances between the cities visited.

Advantages:

 Can take advantage of a priori expert insight into the business process being

controlled.

 Allows the modelling of almost any optimisation problem.

Disadvantages:

 Requires each Business Partner to explicitly formulate their requirements in

mathematical terms.

 To the extent that genericity beyond the 3 current BCs is a goal of SAFIRE, the

labour cost (for both Business Partner and SAFIRE Configuration Expert) of this

process should be borne in mind.

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 13

Confidentiality: EC Distribution

6.2.2 Predicted Objective Function from analysis of process data.

The second option would be to for the Predictive Analytics module to provide the Op-

timisation Function. This could be done either:

1. At configuration time from historical data.

2. Adaptively at runtime by observing the correlation between observable/control

metrics and key objectives.

Advantages:

 Does not require Business Partner engagement to specify the Objective Func-

tion.

 If runtime adaptivity is supported, then this has the potential to respond intelli-

gently to changing production environments.

Disadvantages:

 Success depends on the predictability of the production environment: many ob-

servations may be required before prediction quality converges. This implies the

need for either representative historical process data (for configuration-time

learning of the objective function) or else (for production-time learning) an in-

expensive production process/ human veto of the optimizer while the predictions

are initially learned.

6.3 PLANT DESCRIPTION FOR THE OPTIMISATION AND RECONFIGURATION

PURPOSE

In SAFIRE, the plants to be optimised and reconfigured, together with the production

processes (recipes) to be applied in the manufacturing process, are described with the

ontology briefly described in Subsection 6.3.1, whereas Subsection 6.3.2 introduces the

Factory Description Language (FDL).

6.3.1 Optimisation and Reconfiguration Generic Ontology

In SAFIRE, the plants to be optimised and reconfigured, together with the production

processes (recipes) to be applied, are described with the ontology presented in Figure 3.

This ontology is a subontology of the SAFIRE ontology and complements the ontology

for modelling correlation between information sources, products & situations, as pre-

sented in deliverable D4.1 [SAFIRE, D4.1, 2018], as shown later in this section. In this

subontology, Order is a primary actor describing request for producing a certain amount

of a certain commodity, represented by entity Product. The pair of Product and the

amount that can be produced by a certain ProductionProcess is represented by entity

ProductAmount. The rationale for introducing this entity is the fact that, in general, a

production process can lead to manufacturing more than one commodity at the same

time. ProductionProcess describes operations that shall be executed for producing a

certain commodity. Subprocess models a certain stage of a production process. Subpro-

cessRelation describes a relation between two Subprocesses in a production process.

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 14 Version 1.0 18 October 2018

Confidentiality: EC Distribution

For example, if Subprocess_B has to be executed directly after Subprocess_A, relation

Meet (M) shall be selected. SubprocessRelationType describes the relation (based on

Allen's algebra) between two Subprocesses (Source and Destination) in the same pro-

duction process. This relation belongs to set {EQ , F , LT , M , O , S} (see deliverable

D3.1 [SAFIRE D3.1, 2018] for details). SubprocessRelationUsage models a relation be-

tween a certain Subprocess, selected ProcessingDevice(s) for executing this Subprocess,

its ProcessingDeviceMode and the corresponding ProcessingTime, EnergyConsumption

and MonetaryCost. ProcessingDevice is a primary actor describing a certain processing

resource (e.g. machine) in a plant. ProcessingDeviceMode specifies a mode that a cer-

tain resource can operate in. The modes can model an explicit resource mode (as Eco

mode), or e.g. different commodities/tools using for manufacturing (like wire in the

ONA BC). AbstractProcessingDevice is a set of plant's ProcessingDevice that subpro-

cesses can be allocated to. SequenceDependentSetup models extra costs when two cer-

tain Subprocesses, specified with attributes hasSequenceDependentSetupSource and

hasSequenceDependentSetupDestination, are performed subsequently using the same

processing device. This extra cost can refer to time, energy or monetary cost, so three

data properties are provided: hasSequenceDependentSetupEnergyConsumption, hasSe-

quenceDependentSetupMonetaryCost and hasSequenceDependentSetupProcessing-

Time. The remaining object and data properties are self-explanatory. The object and da-

ta properties of this ontology are enumerated in Table 4 and Table 5, respectively. The

complete SAFIRE ontology comprised of two subontologies: the described ontology for

plant description and the generic ontology from D4.1 is depicted in Figure 4.

Figure 3. Ontology for plant description

Table 4. Object properties in the ontology for plant description

Name Domain Range Description

hasProduct Produc-

tAmount

Product associates manufactured amount of com-

modity with the corresponding commodity

produces Produc-

tionProcess

ProductAmount associates a production process with com-

modity amounts manufactured with this

process

canBeRealisedBy Order ProductionProcess associates an order with a production pro-

cess that can manufacture commodities

satisfying this order

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 15

Confidentiality: EC Distribution

concerns Order Product associates an order with the commodity

manufactured by this order

belongsToSamePro-

ductionLineAs

Processing-

Device

ProcessingDevice models the situation when there exists a few

production lines in a plant and a certain

commodity can be produced in any of them;

however, when a certain resource is selected

to be used at the first stage, it limits the

choice of the resources used at further steps

cannotBeUsedSimul-

taneouslyWith

Processing-

Device

ProcessingDevice models mutual exclusiveness of the re-

sources; for example, two processing devic-

es (e.g. pipes) cannot be used at the same

time as they are connected to the same re-

source (e.g. scale)

definesSubprocessRe-

lation

Subprocess SubprocessRelation associates a subprocess with a certain rela-

tion whose this subprocess is an object

hasFirstSubprocess Produc-

tionProcess

Subprocess associates a production process with the first

subprocess of this process

hasSubprocessRela-

tionDestination

Subpro-

cessRelation

Subprocess associates a relation between a subprocess

with its second parameter

hasSubprocessRela-

tionOperator

Subpro-

cessRelation

SubprocessRelationType associates a relation between a subprocess

and its relation type (e.g. meet or overlap)

hasSubprocessRela-

tionSource

Subpro-

cessRelation

Subprocess associates a relation between a subprocess

and its first parameter

hasProcessingDe-

viceMode

Processing-

Device

ProcessingDeviceMode associates a resource with a mode this re-

source can operate in

hasSequenceDepend-

entSetup

Processing-

Device

SequenceDependentSetup associates a resource with its setup depend-

ing on the sequence of subprocesses execut-

ed on this particular resource

hasSequenceDepend-

entSetupDestination

SequenceDe

quenceDe-

pen-

dentSetup

Subprocess associates a sequence dependent setup with

its second parameter, i.e. the subprocess that

is scheduled to be executed subsequently on

a given resource

hasSequenceDepend-

entSetupSource

SequenceDe

quenceDe-

pen-

dentSetup

Subprocess associates a sequence dependent setup with

its first parameter, i.e. the subprocess that is

scheduled to be executed (directly) earlier

on a given resource

operatesInMode Subpro-

cessPro-

cessingDe-

viceUsage

ProcessingDeviceMode associates a certain resource usage during a

certain subprocess with a mode that the

processing resource operates in

requiresSubpro-

cessProcessingDe-

viceUsage

Subprocess SubprocessProcessingDe-

viceUsage

associates a subprocesses with a certain

resource usage during this subprocess exe-

cution

usesProcessingDevice Subpro-

cessPro-

cessingDe-

viceUsage

ProcessingDevice associates a resource usage during a certain

subprocess with this resource

includes AbstractPro-

cessingDe-

vice

ProcessingDevice associates an abstract processing device (e.g.

a production line, treated as a set of concrete

processing devices) with the concrete pro-

cessing devices

Table 5. Data properties in the ontology for plant description

Name Domain Range Description

hasAmount ProductAmount xsd:int associates an amount of commodity with its integer

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 16 Version 1.0 18 October 2018

Confidentiality: EC Distribution

value

hasEnergyConsump-

tion

SubprocessPro-

cessingDe-

viceUsage

xsd:int associates a processing device usage during a pro-

duction process while executing a certain subpro-

cess with its integer value of energy consumption

hasMonetaryCost SubprocessPro-

cessingDe-

viceUsage

xsd:int associates a processing device usage during a pro-

duction process while executing a certain subpro-

cess with its integer value of monetary cost

hasProcessingTime SubprocessPro-

cessingDe-

viceUsage

xsd:int associates a processing device usage during a pro-

duction process while executing a certain subpro-

cess with its integer value of processing time

hasProcutionProcess-

Name

ProductionPro-

cess

xsd:string associates a production process with its name

hasProcutionProcess-

Priority

ProductionPro-

cess

xsd:int associates a production process with its priority

hasProcessingDevice-

ModeName

ProcessingDe-

viceMode

xsd:string associate a processing device mode with its name

hasProcessingDevice-

Name

ProcessingDe-

vice

xsd:string associates a processing device with its name

hasSequenceDepend-

entSetupEnergyCon-

sumption

SequenceDe-

pendentSetup

xsd:int associates a sequence dependent setup with is inte-

ger value of energy consumption

hasSequenceDepend-

entSetupMonetaryCost

SequenceDe-

pendentSetup

xsd:int associates a sequence dependent setup with is inte-

ger value of monetary cost

hasSequenceDepend-

entSetupProcessing-

Time

SequenceDe-

pendentSetup

xsd:int associates a sequence dependent setup with is inte-

ger value of processing time

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 17

Confidentiality: EC Distribution

Figure 4. SAFIRE ontology comprised of subontologies: the ontology for plant description (green nodes

and generic ontology for modelling correlation between information sources, products & sit-uations

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 18 Version 1.0 18 October 2018

Confidentiality: EC Distribution

6.3.2 Factory Description Language

Based on the ontology presented earlier in this section, an XML-based language for

factory description, named Factory Description Language (FDL), is proposed. This

language is expressive enough to describe all SAFIRE business cases, as defined in

SAFIRE Deliverable D1.1 [SAFIRE D1.1, 2017] and other similar scenarios. The key

idea behind FDL creation is to make the language human-readable, so that a person

outside the project can relatively easily define the problem to be optimised, including a

plant architecture, products, production processes etc. The elements (tags) of FDL

directly correspond with the ideas from the ontology described earlier in this section.

Below, the most important elements of FDL are discussed and a number of examples

has been provided.

Element processingDevices includes a set of elements named processingDevice, repre-

senting all processing resources (e.g. machines) in a plant. A processingDevice element

requires the name attribute. As a resource can operate in a number of various operation

modes, a processingDevice element includes the nested modes element, which in turn

includes a set of mode elements with the mandatory name argument. Each resource has

to include at least one mode.

Example:

<processingDevices>

 <processingDevice name="Conveyor1">

 <modes>

 <mode name="Standard"/>

 </modes>

 </processingDevice>

 <processingDevice name="Mixer1">

 <modes>

 <mode name="Standard"/>

 <mode name="Economic"/>

 </modes>

 </processingDevice>

</processingDevices>

The productionLines element describes all production lines in a factory, introduced as

nested productionLine elements. The name attribute in the productionLine element is

mandatory. The productionLine element includes a nested productionLineProcessing-

Devices element, which in turn includes nested productionLineProcessingDevice ele-

ments. Each productionLineProcessingDevice start-tag includes two attributes, order

and name. The former attribute values are consecutive numbers that identify the re-

source order in a production line, whereas the latter attribute values have to be equal to

the resource names introduced in element processingDevice. Each production line is

linear and thus each possible split of processing results in creating a new production

line, from the production line source to its sink. In example below, the two production

lines starts with the same resource (Scale), but as two routes are possible starting from

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 19

Confidentiality: EC Distribution

Converyor1 or Conveyor2, two productionLine elements starting from the Scale re-

source are generated.

Example:

<productionLines>

 <productionLine name="ProductionLine1">

 <productionLineProcessingDevices>

 <productionLineProcessingDevice order="1" name="Scale"/>

 <productionLineProcessingDevice order="2" name="Conveyor1"/>

 <productionLineProcessingDevice order="3" name="Mixer1"/>

 <productionLineProcessingDevice order="4" name="Tube1"/>

 <productionLineProcessingDevice order="5" name="Pipeline1"/>

 </productionLineProcessingDevices>

 </productionLine>

 <productionLine name="ProductionLine2">

 <productionLineProcessingDevices>

 <productionLineProcessingDevice order="1" name="Scale"/>

 <productionLineProcessingDevice order="2" name="Conveyor2"/>

 <productionLineProcessingDevice order="3" name="Mixer2"/>

 <productionLineProcessingDevice order="4" name="Tube2"/>

 <productionLineProcessingDevice order="5" name="Pipeline2"/>

 </productionLineProcessingDevices>

 </productionLine>

</productionLines>

Element productionProcesses includes a set of production processes that need to be

scheduled in the considered plant. Each productionProcess element, nested in produc-

tionProcesses, includes the mandatory name attribute and one or more alternative sets

of subprocesses leading to manufacturing a certain commodity.

Each subprocess element requires the name attribute and a set of nested subprocessPro-

cessingDevice elements. Unique names of subprocesses are required to refer to them

unambiguously from other elements, e.g. sequenceDependentSetup (explained later). If

more than one subprocessProcessingDevice elements are provided, they are treated as

alternative ones and producing the same commodity.

In the subprocessProcessingDevices element, all processing devices that have to be al-

located simultaneously to execute the given subprocess are listed with elements subpro-

cessProcessingDevice. The mandatory argument of this tag is processingDeviceName,

whose value shall be found in the processingDevice element described earlier. Then

subprocessProcessingDevicesMode elements follow with the mandatory modeName at-

tribute whose value shall be listed into the corresponding processingDevice element, as

described earlier. The subprocessProcessingDevicesMode element includes at least one

of the three elements: processingTime, energyConsumption and monetaryCost. These

three elements specify the corresponding numeric costs of using the particular pro-

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 20 Version 1.0 18 October 2018

Confidentiality: EC Distribution

cessing device in the particular mode and as such can be later used to define a fitness

function of a factory scheduling.

Example:

<productionProcesses>

 <productionProcess name="White50l">

 <subprocesses>

 <subprocess name="White50lTask1">

 <subprocessProcessingDevices>

 <subprocessProcessingDevice processingDevice-

Name="Silo">

 <subprocessProcessingDeviceMode mode-

Name="Standard">

 <processingTime>1</processingTime>

 <energyConsump-

tion>1</energyConsumption>

 <monetaryCost>100</monetaryCost>

 </subprocessProcessingDeviceMode>

 </subprocessProcessingDevice>

 <subprocessProcessingDevice processingDeviceName

="Scale">

 <subprocessProcessingDeviceMode mode-

Name="Standard">

 <processingTime>2</processingTime>

 <energyConsump-

tion>1</energyConsumption>

 <monetaryCost>100</monetaryCost>

 </subprocessProcessingDeviceMode>

 </subprocessProcessingDevice>

 </subprocessProcessingDevices>

 </subprocess>

 </subprocesses>

 </productionProcess>

</productionProcesses>

Another element that is mandatory in a productionProcess element as long as that ele-

ment includes more than one subprocess element is subprocessRelations, using subpro-

cessRelation to describe relations between subprocesses in the considered produc-

tionProcess. Three arguments are mandatory: source and destination requires a proper

name of subprocess introduced in the considered productionProcess, whereas allen-

sOperator requires any relation from the interval Allen's algebra that describes the tem-

poral relation between the source and the destination. The following allensOperator

values are possible: LT for source earlier than destination, S for source since destination,

F for finish destination, EQ for source equal to destination, O for source overlapping

destination, M for source meeting destination and D for source during destination.

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 21

Confidentiality: EC Distribution

Example:

<subprocessRelations>

 <subprocessRelation source="Task1" destination="Task2" allensOperator="M"/>

 <subprocessRelation source="Task2" destination="Task3" allensOperator="M"/>

 <subprocessRelation source="Task3" destination="Task4" allensOperator="M"/>

 <subprocessRelation source="Task4" destination="Task5" allensOperator="M"/>

</subprocessRelations>

Element sequenceDependentSetup determines extra costs when two certain subprocess-

es, specified with attributes source and destination, are performed subsequently using

the same processing device, specified with attribute processingDevice. This extra cost

can refer to time, energy or monetary cost, so three elements are provided: ex-

traProcessingTime, extraEnergyConsumption and extraMonetaryCost.

Example:

<sequenceDependentSetups>

 <sequenceDependentSetup source="White50lTask3" destination="Yellow50lTask3"

processingDevice="Tube1">

 <extraProcessing-

Time>2</extraprocessingTime>

 <extraEnergyConsump-

tion>1</extraenergyConsumption>

 <extraMonetary-

Cost>100</extramonetaryCost>

 </sequenceDependentSetup>

</sequenceDependentSetups>

To explain the application of FDL to SAIFRE BCs, its relation to the ONA BC follows.

In ONA BC, the objective is to minimise the monetary cost per part. This cost can be

obtained by summarising all values of monetaryCost of the subprocesses used to pro-

duce a given part. If applicable, the values of extraMonetaryCost of sequenceDepend-

entSetups should be added as well. FDL can be applied to other SAFIRE BCs in a simi-

lar manner.

The resource allocation consists of selecting processing devices (and thus production

line) for processing the part (product). The selected processing devices (machines) can

operate in a number of modes, each related to, e.g., different wire type. Consequently,

all possible modes for processing each considered part have to be explicitly specified

using element subprocessProcessingDeviceMode.

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 22 Version 1.0 18 October 2018

Confidentiality: EC Distribution

6.4 OE AND OF DEPLOYMENT

6.4.1 Dynamic and scalable orchestration

Both OE and OF are planned to be available in the forms of Docker containers, to be

deployed in a local or remote cloud, communicating each other over HTTP. Such

software architecture not only provides the full flexibility in selecting the data centre for

deployment, but also benefits from numerous cloud-computing features, such as load

balancing or autoscaling. It means that the number of OF containers can be dynamically

changed to answer the current users' requirements. In case of a higher demand caused

by e.g. a growing number of active users, the number of containers is seamlessly scaled

up to keep the appropriate computing power, and similarly scaled down in case of a

lower demand. Such an approach not only guarantees the high system uptime,

theoretically equal 100% but also increases the responsiveness of OE and lowers the

monetary cost in case of the deployment in a public cloud. The auto-scaling feature is

utterly transparent to the user. Even in an unlikely case of any container crash, the load

balancer immediately switches the user to another container build from the same image

in a way that no user data nor session details are lost. This feature is possible due to the

fact that the OE and OF containers are designed to be stateless, i.e., they do not store

any session-related data that shall be persistent. Such a distributed, container-based

architecture of the proposed solution is in line with the state-of-the-art software design

and deployment.

As mentioned in the previous section, the number of the containers implementing the

OF evaluation functionality is scaled automatically using the standard public cloud

autobalancing facilities. However, the container with OE also will be scaled, facilitating

a massive parallel optimisation process performed by a distributed evolutionary

algorithm. In this approach, each OE container is viewed as so-called island. The

optimisation starts with a single OE container (island). Whenever OE does not improve

the result for a predefined interval, it initiates the connection to the same container with

the same configuration scheme it got earlier from SD.

It is assumed that containers with OE and OF will be deployed in a cluster with the

Kubernetes container-orchestration system, which is available in all major cloud

facilities, including AWS, Azure, CloudStack, GCE, OpenStack, OVirt, Photon,

VSphere, IBM Cloud Kubernetes Service, as well as can be installed locally. Both OE

and OF will be provided as separate pods, which means that they will not share volumes

and thus can communicate only by using a network. Since only a single program is

planned to be executed in a single pod, the software dependencies will be highly

decoupled. Similarly, the number of instances of OE will not directly influence the

number of instances of OF, as both of these cardinalities will be decided independently

by so-called Horizontal Pod Autoscaler, whose role is to scale automatically the number

of pods based on observed CPU utilization of the nodes executing the corresponding

containers. This autoscaler is implemented as a controller executed periodically (with a

period controlled by the controller manager‟s --horizontal-pod-autoscaler-sync-period

flag, 30 seconds by default). The controller fetches the per-pod resource metrics for

each targeted pod and calculates the utilisation value as a percentage of the equivalent

resource request on the containers in each pod. The mean of the utilisation across all

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 23

Confidentiality: EC Distribution

targeted pods is used to compute a ratio for scaling the number of desired replicas,

according to equation

 ⌈

 ⌉.

In future, Kubernetes is likely to include other metrics, such as based on memory

footprint or network traffic.

Since the number of pods can change periodically, the pods should not been accessed

directly by other SAFIRE components. Instead, a Kubernetes service needs to be

created to define a related micro-service. Each service is assigned with an IP address

and a port. A service can be discovered with either an environment variables or DNS.

The latter option is planned to be used for OE deployment. It requires an installation of

CoreDNS, a flexible and extensible DNS server, in the cluster. This server is available

in a form of so-called Kubernetes Addons. It observes the cluster using Kubernetes API

and creates a set of the corresponding DNS records for each new services found,

including an appropriate DNS A record. For example, fitnessfunction.optimisation DNS

record will be created for a service named fitnessfunction in namespace optimisation.

Thus, the OE containers can access OF without knowing its IP addresses, just by

querying the appropriate domain name. The OF service, as accessible only by (OE)

containers inside the same cluster, should be published with behaviour ClusterIP. It

makes the service only reachable from within the cluster. However, the OE service

should be invoked by the SAFIRE SD module, that can be installed outside the cluster.

Thus, it must be exposed using an external (public) IP address, which can be obtained

using one of 3 publishing behaviours: NodePort, LoadBalancer and ExternalNode. The

behaviour to be selected depends on the target cloud and, for example, if a cloud

provides an external load balancer, the LoadBalancer behaviour should be selected.

Regardless the choice, an internal load balancer is available to split evenly the inbound

transfer into the available replicas of OE, as generated by Horizontal Pod Autoscaler.

The OF containers will be executed independently from each other, but the OE

containers are expected to share the best individuals found so far during the certain

optimisation process, according to the so-called island model of a parallel evolutionary

algorithm. Each container corresponds to one island and evolves for most of the time.

However, periodically the best solutions are exchanged between islands in a process

which is known as migration. Various migration topologies have been studied for

example a ring, as discussed in [Sudholt, 2015]. Since the number of islands in the

proposed implementation is dynamic and the islands would have the same IP address,

the direct communication between them is hindered. Instead, they can contact another

container, sending it the individuals together with their fitness values and receiving

individuals generated by other OEs. This communication scheme is logically identical

with a complete graph. As the container storing the individuals needs to store them in

the key-value form, it may be realised with one of the popular in-memory NoSQL

databases, such as Redis, MongoDB (Percona memory storage engine) or Memcached.

As the islands execute the same optimisation algorithm, they follow the homogeneous

island model.

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 24 Version 1.0 18 October 2018

Confidentiality: EC Distribution

The parameters that will need to be evaluated in the full prototype are:

 emigration policy, including the number of migrants, their quality (best, worst or

random) and the decision whether the migrants are removed from the island or

copied (pollination),

 immigration policy, including whether the migrants are selected as parents or

replace the worst or random individuals,

 migration interval (periodic or random),

 number of migrants.

The architecture of the Kubernetes cluster for optimisation and reconfiguration engine is

presented in Figure 5.

Figure 5. Kubernetes cluster for optimisation and reconfiguration engine

6.4.2 OE configuration

In line with the SAFIRE assumptions, the OE is developed in a way to enlarge its

generality. OE is agnostic with respect to the provided metrics, described with the

Metrics API, specified earlier in this document. Nevertheless, some minor

customisation is needed before the OE compilation and cloud deployment. It includes

selecting of the engine type among the versions implementing various algorithms

specified in deliverable D3.1 [SAFIRE D3.1, 2018]. Three parameters need to be

selected:

 single objective vs multi objectives,

 bounded execution time vs unbounded execution time,

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 25

Confidentiality: EC Distribution

 selecting production processes (recipes) among alternatives vs applying all

specified recipes.

Except from the above enumerated parameters, the only custom information needed is

the domain address of the OF block that needs to be invoked in order to obtain fitness

value for the individuals created during the search-based optimisation process (or,

alternatively, the domain address of PA if it is planned to be used instead of OF).

The implementation details of this configuration is planned to be described in future

SAFIRE Deliverable D3.4 Full Prototype of Dynamic and Predictable Reconfiguration

and Optimisation Engine.

6.4.3 OF configuration

As stated before in this document, OF is defined using Factory Description Language

(FDL). The FDL specification is to be parsed by Optimisation Engine Configurator

available in the full prototype of OE, generating two artefacts: a OF container to be

deployed in a cloud and a Metrics API template to be used by other SAFIRE modules,

in particular SD. SD module is planned to use that template by filling the values of the

observable metrics and then to send such filled template to OE. OE executes the

operators on the solutions generated according to that template and forwards them, in

the Metrics API format, to the OF (or PA) module for evaluation of the value of these

solutions. This flow is presented in Figure 6.

Figure 6. Design flow for OF configuration building

The container with a customised OF (fitness function evaluator) will be automatically

built out of a code in the Scala language, automatically generated from FDL. The code

to be generated includes one class, inheriting from the IAObjectiveFunction, present in

the early prototype. The following functions need to be overwritten:

predictKeyObjectives and toReportString. The predictKeyObjectives function takes two

parameters: a configuration (of type Configuration, as defined in Metrics API) and a

map from control metrics' names (strings) to their values (of type Value, as defined in

Metrics API) and returns a map from objectives' names (strings) to their values (of type

Value, as defined in Metrics API), as computed by OF. The body of this function is

expected to assign task to the compatible factory resources and schedule them, using

one of the schedulers provided in the interval algebra implementation, developed in the

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 26 Version 1.0 18 October 2018

Confidentiality: EC Distribution

course of the SAFIRE project, e.g. FIFOScheduler. After scheduling, the key objective

values (e.g. makespan) should be updated and these new values returned to the caller.

The Metrics API template is built using class ConfigurationType, as defined in Metrics

API. It should include three array lists: ControlledMetricType, ObservableMetricType

and KeyObjectiveType. All these lists store key-value tuples, where the first element of

the touple is the metrics name (string) and the second one is the appropriate value, as

defined in Metrics API.

6.4.4 Cooperation with other SAFIRE modules

As shown in Figure 7, the modules implementing the optimisation and reconfiguration

engine communicate with two other SAFIRE modules: Situation Determination (SD)

and Predictive Analytics (PA).

The role of Situation Determination (SD) is to identify the presence of particular pat-

terns in factory configuration state and communicate this to the SAFIRE OE compo-

nent. Such communication results in execution of the optimisation process.

Since the Objective Function is where Business Case-specific intelligence resides, the

outputs from SD will be passed on to the OF via the Optimisation Engine. The OF

module computes the fitness value for the solutions found during the search-based op-

timisation process performed by OE. The best solutions with respect to the key objec-

tives provided in the initial HTTP POST issued by SD, are returned to SD in order to be

applied in the manufacturing process under optimisation.

PA plays two roles in the presented communication scheme. The first role is to query it

by OE instead of OF to provide a fitness value of a certain individual. This role is rele-

vant in situation when the nature of the process to be optimised is difficult to be de-

scribed by analytic formulas and hence to the proposed max-plus and interval algebras.

In such cases, the fitness values can be learn by PA by analysing inputs and outputs of

the plant or device. This role is denoted with the arrow between OE and PA in Figure 7.

The second role of PA is to serve as an aim in the value evaluation by OF. In certain

scenarios, it may be the case that the model used for evaluation returns slightly different

values than the ones obtained by the real plant or device. For example, the OF model

can be built based on a certain set of target devices or plants and do not consider the

variability of the certain device or plant under optimisation. Such discrepancy can be

noted by PA and over time the PA module can learn more accurate properties of the op-

timised device or plant. This aiding role of PA is denoted with the dashed line between

OF and PA in Figure 7.

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 27

Confidentiality: EC Distribution

Figure 7. Cooperation between SAFIRE modules

All HTTP POST shown in the figure include a configuration in a JSON form. An ex-

tract from such message content is shown in Figure 8. The sections for key objective

metrics, observable metrics and controlled metrics can be easily identified. All three

possible value types: Real, Integer and Nominal, are shown. For example, the presented

controlled metrics is named Std Weiss A 6 allocation. Its type is nominal and can as-

sume values from set {Mixer 1, Mixer 2, Mixer 3, Mixer 4, Mixer 5}, denoting the re-

source that the particular recipe can be processed with. In this particular example, Mixer

3 has been selected.

The possible situations are problem-dependent, but it is assumed that at least unavaila-

bility of resources or impossibility of executing certain tasks in a provided timeframe

are determinable in any plant or device. This information is transmitted in a form of ob-

servable metrics, as shown in Figure 8. The related observable metrics is named Mixer 1

availability and is of type INT, that can assume either 0 or 1 for not availability or

availability, respectively. In the example case, Mixer 1 is available.

keyObjectiveMetricTypes=[KeyObjectiveType[name=makespan,valueType=ValueType.Real[min=0.0,m

ax=1.7976931348623157E308,typ=REAL],units=n/a,searchDirection=MINIMIZING]]

(...)

ObservableMetricTypes=[ObservableMetricType[name=Mixer 1

availability,valueType=ValueType.Integer[min=1,max=1,typ=INT],units=n/a,sampleRate=SampleRate.E

ventDriven[]],

(...)

ObservableMetricType[name=Weiss Basis A 9

start,valueType=ValueType.Integer[min=0,max=0,typ=INT],units=n/a,sampleRate=SampleRate.EventDr

iven[]], ObservableMetricType[name=Weiss Basis A 9

end,valueType=ValueType.Integer[min=2335,max=2335,typ=INT],units=n/a,sampleRate=SampleRate.E

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 28 Version 1.0 18 October 2018

Confidentiality: EC Distribution

ventDriven[]]

(...)

controlledMetrics={Std Weiss A 6 allocation=Nominal(value=Mixer

3,type=ValueType.Nominal[name=Std Weiss A 6 allocation type ,values={Mixer 1,Mixer 2,Mixer

3,Mixer 4,Mixer 5},typ=NOMINAL]),

(...)

Figure 8. Extracts from an example configuration for OAS use case

6.4.5 Implementation of the SAFIRE security framework

The compliance with the Safire security framework (SSF) requires trusted channels,

which can be obtained with TLS-based connections using the pre-generated keys and

certificates. Such channels represent the communication integrity aspect of security. The

Optimisation Engine (OE) container can be invoked only by the SAFIRE Situation De-

termination (SD) module, authorised earlier following the SSF. Similarly, the connec-

tion between OE and Objective Function (OF) uses TLS and, when exists, the connec-

tion between OF and Predictive Analytics (PA) as well. Notice that OE and OF contain-

ers are generated independently for each end user, thus there is no possibility of access-

ing other user data as long as end users do not reuse the same certificates or keys.

OE is planned to use TLS certificates on both the server and the client side to provide a

proof of identity. Consequently, it requires both the client and server to own a certificate

signed by a specific Certificate Authority (CA), for example using OpenSSL. This way

of securing the connection is widely available, supported by Docker and the majority of

public cloud vendors. Similarly, Kubernetes supports TLS and even each Kubernetes

cluster has its own root CA that can be used by the cluster components to validate the

clients and servers' certificates. If deployed to a Kubernetes cluster, OE, OF and PA can

request a certificate signing using the certificates.k8s.io API. Similarly, a root CA

(named AWS Certificate Manager - ACM) is available when using Amazon Web Ser-

vices (AWS). TLS is also supported by the Network Load Balancer, which can be used

with both EC2 and Fargate Launch Style. TLS is also available in IBM Cloud, Azure,

OpenStack and other public clouds so choosing this protocol does not limit the future

deployment options. The independence of the execution containers and of the data they

employ (subject to disciplined use of access keys, explained later in this section), along

with the guarantee that the above-enumerated containers can be invoked only by a trust-

ed invocation path, covers the architectural integrity aspect of security with the combi-

nation of communication integrity.

The Next Generation Access Control (NGAC) methodology and configurable policy, as

described in SAFIRE deliverable D5.5 [SAFIRE D5.5, 2018], are responsible for the

above-mentioned discipline in the use of access keys. The components of the Reconfig-

urable and Optimisation engine, OE and OF, include the appropriate PEP (Policy En-

forcement Point) subcomponent for communication with Policy Server (PS). The possi-

bility of including PEPs into OE and OF has been raised thanks to The Open Group‟s

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 29

Confidentiality: EC Distribution

modification of the NGAC functional architecture, which unbundled the PEPs and Re-

source Access Points (RAPs) from the NGAC perimeter. As it states in D5.5, the appro-

priate PEP subcomponents for OE and OF are developed by following simple templates

that include calls to the Policy Server through the RESTful Policy Query Interface. The

PEP subcomponents consist of a single decision based on calling the Policy Server and

either returning an error condition to its caller if the Policy Decision Point (PDP), a

module of PS, returned deny or completing the access operation if the PDP returned

permit.

The Policy Server API includes functions initsession and endsession which allow a ses-

sion identifier to be registered as a proxy for a user identifier, where user denotes trust-

ed components such as OE and OF. Then the access checks are made with the session

identifier instead of a user identifier (i.e., its key). A particular SAFIRE component exe-

cution can be associated with a user id under a session id, which is a long string that is

infeasible for an imposter to guess. The session id is passed to the OE (user according to

the definition from D5.3) component to use when it makes requests to a policy en-

forcement point for OF (object according to the definition from D5.3) access. When the

OE container instance is initiated by the SD component (as described earlier in this

document), the initiator registers a session id to the policy administration API and pass-

es that session id to the OE container. Only the initiator (SD), not the OE container, has

the authorisation to call this API (enforced by its authorised TLS connection to the

server). When the containers want to access their data, they make a request to a PEP for

that data kind, supplying the session id in the request. The PEP, in turn, asks the PDP

through the Policy Query Interface access request, using the session id instead of a user

id, whether the access is permitted according to the policy and then enforces this deci-

sion accordingly. In this scheme, the PEPs own the data, that is, they are granted exclu-

sive access to all the data so that they can enforce access according to the policy deci-

sions of the PDP. The same scheme is followed when OE initiates the OF container.

The whole communication scheme based on SSF is presented in Figure 9. In the figure,

two session ids are generated: session_id is generated by the SD module using the SD's

user key (sd_user_id) and session2_id is generated by OE using the OE's user key

(oe_user_id). The access call to PS checks whether the user (either SD or OE) is per-

mitted to execute the object (OE and OF, respectively). If the access is permitted, the

component functionality is executed and the results are returned to the invoker. Then

the session is ended. In the figure, the optional PA module is not present. Its presence

would require establishing the third session based on the OF's user key (of_user_id) and

then using it for invoking the functionality of PA.

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 30 Version 1.0 18 October 2018

Confidentiality: EC Distribution

Figure 9. Extracts from an example configuration for OAS use case

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 31

Confidentiality: EC Distribution

7. BUSINESS USE CASES

7.1 EXPLICIT DESCRIPTION OF THE OBJECTIVE FUNCTION EXAMPLE - OAS USE

CASE

This section describes modelling of a small plant with a fixed architecture with respect

to the number & types of resources (silos, conveyors, tubes, scales, pipelines, mixers

etc.) and connections between them. The plant to be modelled is shown in Figure 10.

Figure 10. Example of a simple plant

As shown in the above Figure, several resources have been identified, namely Silo,

Scale, Conveyor1, Conveyor2, Mixer1, Mixer2, Tube1, Tube2, Pipeline1, Pipeline2,

Storage tank. An example of a recipe for manufacturing certain amount of a certain

commodity is shown in Table 6. The resources enumerated as elements in a single set

have to be allocated simultaneously. The tasks in this recipe forms a manufacturing job

whose tasks have to processed in a sequence and are related with the immediate prece-

dence relationship relation between neighbouring tasks, equivalent to the meet relation

in Allen's interval algebra. The last task in the recipe is tagged with the manufactured

products and its amount.

Assuming that Conveyors are connected to the same silos, it may be the case that they

cannot be used simultaneously. Then, a mutex has to be created to guarantee their mu-

tual exclusiveness. Similarly, due to the limited connectivity of the resources in the

plant, resource affinities between conveyors, mixers and pipelines with the same indices

have to be defined. Our extension to the state-of-the-art in Interval Algebra modelling

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 32 Version 1.0 18 October 2018

Confidentiality: EC Distribution

(see deliverable D3.1 for a detailed description of Max-plus and Interval Algebras) is

sufficient to model this.

Table 6. Example recipe of a manufacturing job

Task

name

Compatible resources Processing time Rela-

tions

with

other

tasks

Tag

Task

1

{Silo,Scale} {Silo,Scale}: time1 Task1

m
1

Task2

Task

2

{Scale,Conveyor1,Mixer1},

{Scale,Conveyor2,Mixer2}

{Scale,Conveyor1,Mixer1}

: time2A

{Scale, Convey-

or2,Mixer2}: time2B

Task1 m

Task2,

Task2 m

Task3

Task

3

{Tube1,Mixer1},

{Tube2,Mixer2}

{Tube1,Mixer1}: time3A

{Tube2,Mixer2}: time3B

Task2 m

Task3,

Task3 m

Task4

Task

4

{Mixer1},{Mixer2} {Mixer1}: time4A

{Mixer2}: time4B

Task3 m

Task4,

Task4 m

Task5

Task

5

{Mix-

er1,Pipeline1},{Mixer2,Pipeline2}

{Mix-

er1,Pipeline1}:time5A

{Mix-

er2,Pipeline2}:time5B

Task4 m

Task5

Commodi-

ty1:

Amount1

7.2 EXPLICIT DESCRIPTION OF THE OBJECTIVE FUNCTION EXAMPLE - ONA USE

CASE

The beneficiaries of optimisation in the ONA use case are customers of ONA: typically

SMEs with a certain number of WEDM machines of various models. The Key Objec-

tive metrics, Controlled Metrics and Observable Metrics have been identified, as listed

in Table 7.

The considered WEDM machines are characterised with the maximum size of the pro-

cessed part that can be processed and their usage cost per hour. Large and special ma-

chine models are more expensive than the standard and small series. Consequently, the

cost per hour of the machine usage must be affected by the machine model and consid-

ered as the optimisation problem. Similarly, the cost and time of processing depends on

the wire type and its consumption (related to the wire speed), that is set according to the

1
 In the applied Allen‟s Interval Algebra, m operator denotes the meet relation, which means that the second task is

invoked directly after the first one.

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 33

Confidentiality: EC Distribution

application and its conditions. The machine can operate in so-called eco mode, which

can save consumables cost (especially the wire) with a possible penalty in cutting speed.

The part processing time in each machine using wire of a certain type and diameter can

be estimated with sufficient accuracy based on data provided by ONA for both standard

and eco modes. Due to this possibility of determining the interval lengths for a single

part processing, this optimisation problem can be described with Interval Algebra, men-

tioned in the previous subsection. Each task corresponds with a single part processing

and is independent from other tasks. Such tasks are assigned to the available machines

considering their processing time for the given application and its conditions, selecting

both the wire and the processing mode, so that the chosen key objective metric (OEE or

cost/part) is optimal in a given time window.

Our extension to the state-of-the-art in Interval Algebra modelling (see deliverable

D3.1 for a detailed description of Max-plus and Interval Algebras) is sufficient to model

this use case.

Table 7. Metrics in the ONA use case

Key objective metrics OEE (maximise)

Cost/part (minimise)

Controlled metrics Wire type

Wire diameter

Machine model

Machine eco-mode

Observable metrics Actual process time per job/part

Actual wire composition

Energy consumption

7.3 PREDICTED OBJECTIVE FUNCTION FROM ANALYSIS OF PROCESS DATA -

ELECTROLUX USE CASE

In the Electrolux use case, the Key Objective metrics, Controlled Metrics and Observa-

ble Metrics have been identified, as listed in Table 8. The influence of the controlled

metrics on key objective and observable metrics can be determined by Predictive Ana-

lytics module based on the values obtained experimentally. The proposed Metrics API,

Schema Interface and the Objective Function interface are capable of expressing this

optimisation problem.

Table 8. Metrics in the Electrolux use case

Key objective metrics Boiling detection error

Temperature estimation error

Controlled metrics Power/energy profile

Data acquisition period

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 34 Version 1.0 18 October 2018

Confidentiality: EC Distribution

Observable metrics Type of pot

Type of food/water amount

Cooking speed

Expected cooking level

Power

Current

Voltage

Temperature

Vibration

8. REQUIREMENTS COVERAGE (TABLE)

This section presents the coverage of the related requirements by the functionalities of

the three components developed in the course of WP3 Dynamic and Predictable Recon-

figuration & Optimisation Engine. The requirements presented in this section are con-

sistent with the ones enumerated in section 5 of SAFIRE deliverable D1.1 [SAFIRE

D1.1, 2017]. In all the tables presented in this section, two columns including the state

of the requirements coverage for the early (EP) and full (FP) prototypes are provided;

the former has been taken from SAFIRE deliverable D3.2 [SAFIRE D3.2, 2017].

8.1 RECONFIGURATION

No. Requirement Overall Pri-

ority

EP FP

U27 Able to reconfigure the selection of production line SHALL + +

U28 Able to reconfigure composition of production batch-

es

SHALL + +

U29 Able to reconfigure priority management functions SHALL + +

U30 Able to reconfigure part express management MAY + +

U31 Able to suggest process improvements SHALL + +

U32 Able to reconfigure job scheduling SHOULD + +

U33 Able to reconfigure process adaptation in response to

operator actions

SHOULD + +

U34 Able to reconfigure the communication nodes SHOULD + +

U35 Able to reconfigure Hob accessory express manage-

ment / suggestions

SHOULD + +

U36 Able to reconfigure Pot position suggestions SHOULD + +

U37 Able to reconfigure Hob recipes manager and sugges-

tions

SHOULD + +

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 35

Confidentiality: EC Distribution

8.2 OPTIMISATIONS

No. Requirement Overall Pri-

ority

EP FP

U39 Able to use knowledge from previous monitoring and

analysis for optimisations

SHALL + +

U41 Able to optimise based on KPIs configured based on

data analytics, situational monitoring & analysis re-

sults

SHOULD + +

U42 Able to optimise overall equipment effectiveness

(OEE)

SHALL + +

U43 Able to optimise process speed SHALL + +

U44 Able to optimise energy consumption SHOULD + +

U45 Able to optimise part quality SHOULD + +

U46 Able to optimise consumables consumption SHALL + +

U47 Able to optimise tool wear MAY + +

U49 Able to optimise batch scheduling in proNTo SHOULD + +

8.3 PERFORMANCE

No. Requirement Overall Pri-

ority

EP FP

U115 Does not negatively affect the usual production

processes

SHALL + +

U116 Support for scalability in the size of cloud and com-

puting resources

SHALL + +

U117 Support for horizontal scalability to many machines SHALL + +

U118 Capable of real time data ingestion (registering

data)

SHALL + +

U119 Capable of batch processing of data (offline analy-

sis)

SHALL + +

U120 Capable of real time data processing SHALL + +

U121 Capable of providing real time reconfigurations /

optimisations (subject to network throughput limits)

SHALL + +

U122 Able to analyse relevant data within a given

timeframe

SHALL + +

U123 Capable of storing up to 5 TB/year/machine with

resource recycling facilities

SHALL + +

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 36 Version 1.0 18 October 2018

Confidentiality: EC Distribution

U124 Provides support for Machine Learning (Supervised

/ Unsupervised / Anomaly Detection)

SHALL + +

U125 Able to achieve required precision on cooking pro-

cess estimation / optimisations

SHALL + +

8.4 INTERFACES

No. Requirement Overall Pri-

ority

EP FP

U127 Provides a web based user interface SHALL + +

U128 Implemented as a set of web services / web based

solution

SHALL + +

U129 Able to customise the interfaces SHALL + +

U132 Supports human-machine interface on multiple

devices

SHALL + +

U133 Able to interface with third-party reporting systems SHOULD *
2
 +

3

U134 Able to interface with third-party dashboards SHALL + +

U136 Supports reconfiguration of the process / machine

by remote commands

SHALL + +

U137 Able to be integrated with proNTo SHALL *
4
 +

5

U138 Supports the ONA Machine Protocols SHALL *
6
 +

7

8.5 COMMUNICATIONS

No. Requirement Overall Pri-

ority

EP FP

U142 Support for Internet/Ethernet communications SHALL + +

U143 Support for VPN connectivity SHOULD + +

U144 Support for Machine / Cloud protocols SHALL + +

U145 Support for Machine / Fog computing SHOULD + +
8

2
 The outputs from OE can be used with the third-party reporting systems, but a customised bridge is needed.

3
 The outputs from OE can be used with the third-party reporting systems, but a customised bridge is needed.

4
 The proNTo software can be used for data acquisition which, in turn, can be provided by SD to OE.

5
 The proNTo software can be used for data acquisition which, in turn, can be provided by SD to OE.

6
 The ONA Machine Protocol can be used for data acquisition which, in turn, can be provided by SD to OE.

7
 The ONA Machine Protocol can be used for data acquisition which, in turn, can be provided by SD to OE.

8
 As described in paper P. Dziurzanski, J. Swan and L.S. Indrusiak, Smart factories scheduling using edge computing

and clouds, submitted to the 1st International Workshop on Trustworthy and Real-time Edge Computing for Cyber-

Physical Systems (TREC4CPS).

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 37

Confidentiality: EC Distribution

U146 Support for communications between operators and

platform

SHOULD + +

U147 Support for communications with business analytics MAY + +

8.6 HARDWARE/PLATFORM/DEVICES

No. Requirement Overall Pri-

ority

EP FP

U148 Supports continuous operation (24h per day, 7 days

per week)

SHALL + +

U149 As platform independent as possible SHALL +
9
 +

10

U150 Supports multiple deployment scenarios including

Cloud / On Premise / Hybrid / Third-party Managed

SHOULD + +

U151 Provided connector with proNTo system operates

under Windows

SHALL * +

9 As a container, possible to be executed on any system supporting Docker.
10 As a container, possible to be executed on any system supporting Docker.

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 38 Version 1.0 18 October 2018

Confidentiality: EC Distribution

9. REFERENCES

[Allen, 1983] James F. Allen, Maintaining knowledge about temporal intervals. Com-

mun. ACM 26, 11 (November 1983), 832-843

[Burke et al, 2003] Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter

Ross, and Sonia Schulenburg. Hyper-heuristics: An emerging direction in modern

search technology. In Handbook of metaheuristics, pages 457–474. Springer, 2003

[Burns et al, 2000] Alan Burns, Divya Prasad, Andrea Bondavalli, Felicita Di Gian-

domenico, Krithi Ramamritham, John Stankovic, and Lorenzo Strigini. 2000. The

meaning and role of value in scheduling flexible real-time systems. Journal of systems

architecture 46, 4 (2000), 305–325.

[Chen et al, 2017] Baotong Chen, Jiafu Wan, Lei Shu, Peng Li, Mithun Mukherjee, and

Boxing Yin. 2017. Smart Factory of Industry 4.0: Key Technologies, Application Case,

and Challenges. IEEE Access (2017).

[Diaz et al, 2011] Nancy Diaz, Elena Redelsheimer, and David Dornfeld. 2011. Energy

consumption characterization and reduction strategies for milling machine tool use.

Glocalized solutions for sustainability in manufacturing (2011), 263–267.

[Durillo and Nebro, 2011] Juan J Durillo and Antonio J Nebro. 2011. jMetal: A Java

framework for multiobjective optimization. Advances in Engineering Software 42, 10

(2011), 760–771.

[Dziurzanski et al, 2018] Piotr Dziurzanski, Jerry Swan, Leandro Soares Indrusiak,

2018. “Value-Based Manufacturing Optimisation in Serverless Clouds for Industry

4.0”, Genetic and Evolutionary Computation Conference (GECCO) 2018, Kyoto, Japan

(submitted)

[Gendreau and Potvin, 2010] Michel Gendreau, Jean-Yves Potvin. 2010. Handbook of

Metaheuristics, Springer Science & Business Media, 2010.

[Goto, 2014] Hiroyuki Goto. 2014. Introduction to max-plus algebra. In Proceedings of

the 39th International Symposium on Symbolic and Algebraic Computation. ACM, 21–

22.

[Holland, 1992] John H. Holland. 1992. Adaptation in Natural and Artificial Systems:

An Introductory Analysis with Applications to Biology, Control and Artificial Intelli-

gence. MIT Press, Cambridge, MA, USA.

[Khemka et al, 2015] Bhavesh Khemka, Ryan Friese, et al. 2015. Utility functions and

resource management in an oversubscribed heterogeneous computing environment.

IEEE Trans. Comput. 64, 8 (2015), 2394–2407

[Kronberger et al, 2013] Gabriel Kronberger, Michael Kommenda, Stefan Wagner, and

Heinz Dobler. 2013. GPDL: a framework-independent problem definition language for

grammar-guided genetic programming. In Proceedings of the 15th annual conference

 D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

18 October 2018 Version 1.0 Page 39

Confidentiality: EC Distribution

companion on Genetic and evolutionary computation (GECCO '13 Companion), Chris-

tian Blum (Ed.). ACM, New York, NY, USA, 1333-1340. DOI:

http://dx.doi.org/10.1145/2464576.2482713

[Leclerc et al, 2016] Guillaume Leclerc, Joshua E Auerbach, Giovanni Iacca, and Dario

Floreano. 2016. The seamless peer and cloud evolution framework. In Proceedings of

the 2016 on Genetic and Evolutionary Computation Conference. ACM, 821–828.

[Papadimitriou and Steiglitz, 1982]Christos H. Papadimitriou and Kenneth Steiglitz.

1982. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA.

[Ma et al, 2017] Ning Ma, Xiao-Fang Liu, Zhi-Hui Zhan, Jing-Hui Zhong, and Jun

Zhang. 2017. Load balance aware distributed differential evolution for computationally

expensive optimization problems. In GECCO Proceedings Companion, 2017. ACM,

209–210.

[Mendez et al, 2007] Carlos A. Méndez, Jaime Cerdá, Ignacio E. Grossmann, Iiro Har-

junkoski, Marco Fahl, State-of-the-art review of optimization methods for short-term

scheduling of batch processes, Computers & Chemical Engineering, Volume 30, Issues

6–7, 2006, Pages 913-946.

[SAFIRE D1.1, 2017] Electrolux, OAS and ONA, D1.1 Application Scenarios Re-

quirements Analysis, SAFIRE project deliverable, 2017.

[SAFIRE D1.2, 2017] University of York, D1.2 Optimisation Metrics and Benchmark-

ing, SAFIRE project deliverable, 2017.

[SAFIRE D3.1, 2018] University of York, D3.1 Methodology for Dynamic and Predict-

able Reconfiguration and Optimisation Engine, 2018.

[SAFIRE D3.2, 2018] University of York, D3.2 Early Specification of Dynamic and

Predictable Reconfiguration and Optimisation Engine, SAFIRE project deliverable,

2018.

[SAFIRE D4.1, 2018] ATB, D 4.1 Methodology for Situational Awareness, SAFIRE

project deliverable, 2018.

[SAFIRE D4.3, 2018] ATB, D 4.3 Early Prototype of Situational Awareness Services,

SAFIRE project deliverable, 2018.

[SAFIRE D5.5, 2018] The Open Group, D 5.5 Full Specification of SPT Framework,

SAFIRE project deliverable, 2018.

[Salza et al, 2016] Pasquale Salza, Filomena Ferrucci, and Federica Sarro. 2016. Devel-

op, Deploy and Execute Parallel Genetic Algorithms in the Cloud. In GECCO Proceed-

ings Companion, 2016. ACM, 121–122

D3.5 Final Specification of Dynamic and Predictable Reconfiguration and Optimisation Engine

Page 40 Version 1.0 18 October 2018

Confidentiality: EC Distribution

[Salza et al, 2017] Pasquale Salza, Erik Hemberg, Filomena Ferrucci, and Una-May

O‟Reilly. 2017. Towards evolutionary machine learning comparison, competition, and

collaboration with a multi-cloud platform. In GECCO Proceedings Companion, 2017.

ACM, 1263–1270.

[Simons et al, 2017] Chris Simons, Jerry Swan, Krzysztof Krawiec, and John Wood-

ward. “Metaheuristic Design Patterns”. In: Emergent Research on the Application of

Optimization Algorithms. IGI Global, 2017.

[Soares Indrusiak and Dziurzanski, 2015] Leandro Soares Indrusiak, Piotr Dziurzanski,

"An interval algebra for multiprocessor resource allocation". SAMOS 2015: 165-172

[Swan et al, 2015] Jerry Swan, Steven Adriaensen, Mohamed Bishr, Edmund K. Burke

and others. “A Research Agenda for Metaheuristic Standardization”. In: Proceedings of

the Eleventh Metaheuristics International Conference (MIC), Agadir, Morocco. 2015.

url: https://goo.gl/kC06p5.

[Sudholt, 2015] Dirk Sudholt, Parallel evolutionary algorithms, Springer Handbook of

Computational Intelligence, 2015, 929-959

[Woodward et al, 2014] John Woodward, Jerry Swan, and Simon Martin. “The „Com-

posite‟ Design Pattern in Metaheuristics”. In: Proceedings of the 2014 Conference

Companion on Genetic and Evolutionary Computation Companion. GECCO Comp ‟14.

Vancouver, BC, Canada: ACM, 2014, pp. 1439–1444. ISBN: 978-1-4503-2881-4. DOI:

10.1145/2598394.2609848.

https://goo.gl/kC06p5
https://goo.gl/kC06p5
http://dx.doi.org/10.1145/2598394.2609848

