
 

 

 

 
 

Project Partners:  ATB, Electrolux, IKERLAN, OAS, ONA, The Open Group, University of York  
 
 

 

 

Every effort has been made to ensure that all statements and information contained herein are accurate, however the 

SAFIRE Project Partners accept no liability for any error or omission in the same.  

 

© 2020 Copyright in this document remains vested in the SAFIRE Project Partners. 

Project Number 723634 

 

D5.4 Full Prototype of the SPT Framework 

 
Version 2.2 

28 June 2020 

Final 

 

Public Distribution 

The Open Group 



D5.4 Full Prototype of the SPT Framework  

Page ii Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

PROJECT PARTNER CONTACT INFORMATION 

ATB 

Sebastian Scholze 

Wiener Strasse 1 

28359 Bremen  

Germany 

Tel: +49 421 22092 0 

E-mail: scholze@atb-bremen.de 

Electrolux Italia 

Claudio Cenedese  

Corso Lino Zanussi 30 

33080 Porcia 

Italy  

Tel: +39 0434 394907 

E-mail: claudio.cenedese@electrolux.it 

IKERLAN 

Trujillo Salvador  

P Jose Maria Arizmendiarrieta 

20500 Mondragon 

Spain 

Tel: +34 943 712 400 

E-mail: strujillo@ikerlan.es 

OAS 

Karl Krone  

Caroline Herschel Strasse 1 

28359 Bremen  

Germany 

Tel: +49 421 2206 0 

E-mail: kkrone@oas.de 

ONA Electroerosión 

Jose M. Ramos  

Eguzkitza, 1. Apdo 64 

48200 Durango 

Spain 

Tel: +34 94 620 08 00 

jramos@onaedm.com 

The Open Group 

Scott Hansen 

Rond Point Schuman 6, 5
th

 Floor 

1040 Brussels 

Belgium 

Tel: +32 2 675 1136 

E-mail: s.hansen@opengroup.org 

University of York  

Leandro Soares Indrusiak 

Deramore Lane 

York YO10 5GH 

United Kingdom 

Tel: +44 1904 325 570 

E-mail: leandro.indrusiak@york.ac.uk 

 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page iii 

Confidentiality: Public Distribution 

DOCUMENT CONTROL 

Version Status Date 

0.1 Initial structure and outline 1 December 2018 

0.5 Initial content 23 December 2018 

1.0 Final version 31 December 2018 

2.0 First content updates addressing review recommendations 21 April 2020 

2.1 Additional updated content 29 May 2020 

2.2 Final content addressing review recommendations 28 June 2020 

 



D5.4 Full Prototype of the SPT Framework  

Page iv Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

TABLE OF CONTENTS 

1. Introduction ................................................................................................................................................................. 1 

1.1. Overview.................................................................................................................................................................. 1 

1.2. Approach Applied .................................................................................................................................................... 1 

1.3. Document Structure ................................................................................................................................................. 2 
2. Description of the NGAC Full Prototype (FP) ......................................................................................................... 3 

2.1. Declarative Policy Language .................................................................................................................................. 4 
2.1.1. Declarative Policy Language Definition ......................................................................................................... 4 
2.1.2. Example policy in declarative representation ................................................................................................. 5 
2.1.3. Implementation ............................................................................................................................................... 6 

2.2. ‘ngac’ Policy Tool ................................................................................................................................................... 7 
2.2.1. Policy tool interactive commands ................................................................................................................... 7 
2.2.2. Command procedures and scripts ................................................................................................................... 9 
2.2.3. Policy Graph Display .................................................................................................................................... 10 
2.2.4. Implementation ............................................................................................................................................. 10 

2.3. ‘ngac-server’ Policy Server ................................................................................................................................... 12 
2.3.1. Policy Query Interface (PQI) ........................................................................................................................ 12 
2.3.2. Policy Administration Interface (PAI) .......................................................................................................... 13 
2.3.3. Policy server command line arguments ........................................................................................................ 15 
2.3.4. Protection of the policy administration interface .......................................................................................... 15 
2.3.5. Dynamic policy change ................................................................................................................................. 16 
2.3.6. Policy Composition ....................................................................................................................................... 16 
2.3.7. Auditing ........................................................................................................................................................ 17 
2.3.8. Implementation ............................................................................................................................................. 17 

2.4. Requirements, Objectives and results of the FP .................................................................................................... 18 
2.4.1. Setting the objectives .................................................................................................................................... 18 
2.4.2. Fulfillment of the Requirements ................................................................................................................... 19 

3. General Integration of NGAC.................................................................................................................................. 22 

3.1. NGAC-aware Client Applications ......................................................................................................................... 22 

3.2. CA/PEP/RAP Architectural Pattern ...................................................................................................................... 23 

3.3. PEP/RAP Design, Implementation and Operation ................................................................................................ 24 
3.3.1. PEP/RAP Unbundling Rationale .................................................................................................................. 24 
3.3.2. Adapting the Client Application ................................................................................................................... 25 
3.3.3. Design of the PEP/RAP ................................................................................................................................ 26 
3.3.4. PEP Policy Enforcement Interface (peapi) ................................................................................................... 28 
3.3.5. RAP Resource Access Interface (raapi) ........................................................................................................ 28 
3.3.6. PEP and RAP Implementation Templates .................................................................................................... 28 

3.4. Enforcing the NGAC Functional Architecture ...................................................................................................... 29 

3.5. Deploying the NGAC components ......................................................................................................................... 30 

3.6. Initiating the NGAC components ........................................................................................................................... 31 

3.7. Web services as protected resources ..................................................................................................................... 33 
4. Integration with Predictive Analytics ...................................................................................................................... 35 

4.1. Storage .................................................................................................................................................................. 35 
4.1.1. Cassandra Distributed Database .................................................................................................................... 35 
4.1.2. PostgreSQL Relational Database .................................................................................................................. 38 
4.1.3. NGAC Integration ......................................................................................................................................... 39 

4.2. Web Services ......................................................................................................................................................... 39 
4.2.1. NGAC Integration ......................................................................................................................................... 39 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page v 

Confidentiality: Public Distribution 

4.3. Visualization .......................................................................................................................................................... 39 
4.3.1. Apache Superset ........................................................................................................................................... 40 
4.3.2. Apache Zeppelin ........................................................................................................................................... 40 
4.3.3. NGAC Integration ......................................................................................................................................... 41 

4.4. Unified Processing Engine .................................................................................................................................... 41 
5. Integration with Reconfiguration and Optimisation ............................................................................................. 42 
6. Integration with Situation Determination ............................................................................................................... 45 
7. Installation and Operation ....................................................................................................................................... 48 

7.1. Installing and Running the ‘ngac’ policy tool ....................................................................................................... 48 
7.1.1. Install SWI-Prolog ........................................................................................................................................ 48 
7.1.2. Install the ‗ngac‘ source files and/or executable ........................................................................................... 48 
7.1.3. Initiate the ‗ngac‘ policy tool ........................................................................................................................ 48 
7.1.4. Test the installed ‗ngac‘ tool ......................................................................................................................... 48 
7.1.5. Running the examples ................................................................................................................................... 49 

7.2. Installing and Running the ‘ngac-server’ .............................................................................................................. 49 
7.2.1. Install SWI-Prolog ........................................................................................................................................ 49 
7.2.2. Install the ‗ngac‘ server source files and/or executable ................................................................................ 49 
7.2.3. Initiating the ‗ngac-server‘ ............................................................................................................................ 49 
7.2.4. Test the installed ‗ngac-server‘ ..................................................................................................................... 50 

8. NGAC Customisation ............................................................................................................................................... 51 

8.1. Customisations and Extensions to NGAC for SAFIRE .......................................................................................... 51 

8.2. Importing Policies to the Server ............................................................................................................................ 53 
8.2.1. Modifying Policy at Runtime ........................................................................................................................ 53 
8.2.2. Policy Composition ....................................................................................................................................... 54 
8.2.3. Persistence of the Server Policy Database .................................................................................................... 54 

8.3. NGAC developer features and customisation ........................................................................................................ 54 
8.3.1. Customisation of the NGAC components ..................................................................................................... 54 
8.3.2. Predefined command procedures .................................................................................................................. 55 
8.3.3. Extension of the built-in tests........................................................................................................................ 56 
8.3.4. Global parameters ......................................................................................................................................... 56 
8.3.5. New policy server APIs ................................................................................................................................ 56 

9. Software Tools ........................................................................................................................................................... 57 
10. Conclusions and Plans .............................................................................................................................................. 58 
11. References .................................................................................................................................................................. 59 
12. APPENDIX A – Next Generation Access Control ................................................................................................. 60 

12.1. NGAC Overview ........................................................................................................................................... 60 

12.2. NGAC Role in SAFIRE Architecture ............................................................................................................ 60 

12.3. NGAC Motivation ......................................................................................................................................... 62 

12.4. NGAC Policy Framework ............................................................................................................................. 62 
13. APPENDIX B – NGAC-based Security Policy Representations ........................................................................... 64 

13.1. Declarative Policy Language representation ............................................................................................... 64 

13.2. Graph representation .................................................................................................................................... 64 

13.3. Low-Level Representations ........................................................................................................................... 66 
14. APPENDIX C – NGAC policy development ........................................................................................................... 68 

14.1. Methodology for definition of policy elements .............................................................................................. 68 
14.1.1. Attributes ...................................................................................................................................................... 68 
14.1.2. Web services as policy objects...................................................................................................................... 70 

14.2. Example – Development of an NGAC policy for ONA ................................................................................. 72 
14.2.1. The ONA security environment .................................................................................................................... 72 
14.2.2. ONA security problem .................................................................................................................................. 73 



D5.4 Full Prototype of the SPT Framework  

Page vi Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

14.2.3. ONA policy formalization ............................................................................................................................ 74 
15. APPENDIX D –NGAC applied to IISF Security Functions .................................................................................. 81 

15.1. Overview of NGAC applicability in the IISF ................................................................................................ 81 

15.2. Security model and policy ............................................................................................................................. 82 

15.3. Endpoint protection ...................................................................................................................................... 82 

15.4. Communication and connectivity protection ................................................................................................ 83 

15.5. Security monitoring and analysis.................................................................................................................. 84 

15.6. Security configuration and management ...................................................................................................... 84 

15.7. Data protection ............................................................................................................................................. 85 

15.8. Refined role of NGAC in the IISF ................................................................................................................. 86 
 

  



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page vii 

Confidentiality: Public Distribution 

TABLE OF FIGURES 

Figure 1: TOG NGAC functional architecture with "unbundled" PEP & RAP .................................................................. 3 
Figure 2: Example policy (a) expressed in the declarative representation .......................................................................... 6 
Figure 3: CA/PEP/RAP pattern forming the resource access path ................................................................................... 23 
Figure 4: Adaptation of an application to use NGAC ....................................................................................................... 25 
Figure 5: Initiation of the NGAC functional architecture components ............................................................................. 31 
Figure 6: Sequence of actions for NGAC mediation of ordinary object operation ........................................................... 33 
Figure 7: Sequence for NGAC-mediated Web service proxy ........................................................................................... 34 
Figure 8: Conceptual Predictive Analytics Platform architecture..................................................................................... 35 
Figure 9: Communications among components in OAS use case .................................................................................... 44 
Figure 10 Data flow including security layer ................................................................................................................... 47 
Figure 11: Assignment/Association Graphs ..................................................................................................................... 64 
Figure 12: Independent derived privileges from Figure 11(a) and (b) .............................................................................. 65 
Figure 13: Combined policy graphs of Figure 11 ............................................................................................................. 65 
Figure 14: Derived privileges of the combined graphs of Figure 11 ................................................................................ 65 
Figure 15: 'ngac' policy_graph rendering of policy (a) ..................................................................................................... 66 
Figure 16: 'ngac' policy_graph rendering of policy (b) ..................................................................................................... 66 
Figure 17: 'Privileged-Access' policy graph ..................................................................................................................... 69 
Figure 18: Declarative specification of the 'Privileged-Access' policy ............................................................................. 70 
Figure 19: Representative user attribute sub-graph of the ONA Ecosystem policy ......................................................... 75 
Figure 20: Representative object and object attribute sub-graph of the ONA Ecosystem policy ..................................... 76 
Figure 21: Graph of the ONA Ecosystem policy .............................................................................................................. 80 
Figure 22: Functional Building Blocks of the IISF .......................................................................................................... 81 
Figure 23: Overview of NGAC role in IISF functional building blocks .......................................................................... 81 
Figure 24: Overview of NGAC role in IISF security model and policy functional breakdown ....................................... 82 
Figure 25: NGAC role in endpoint protection .................................................................................................................. 83 
Figure 26: NGAC role in communication and connectivity protection ............................................................................ 83 
Figure 27: NGAC role in monitoring and analysis ........................................................................................................... 84 
Figure 28: NGAC role in security configuration and management .................................................................................. 85 
Figure 29: NGAC role in data protection ......................................................................................................................... 85 
Figure 30: NGAC role in security model and policy refined ............................................................................................ 86 

  

TABLE OF TABLES 

Table 1: Overview of use case requirements and how they are fulfilled .......................................................................... 20 
Table 2: PEP and RAP pseudo-code................................................................................................................................. 27 
Table 3: OAS policy ......................................................................................................................................................... 45 
Table 4: ONA user attribute sub-graph policy specification ............................................................................................ 75 
Table 5: ONA object and object attribute sub-graph policy specification ........................................................................ 76 
Table 6: Associations for the ONA Ecosystem policy specification ................................................................................ 77 
Table 7: ONA Ecosystem policy specification ................................................................................................................. 78 



D5.4 Full Prototype of the SPT Framework  

Page viii Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

ABBREVIATIONS AND ACRONYMS 

AD Active Directory 

AP Abstract Platform 

API Application Programming Interface 

App Application 

EP Early Prototype 

EPP Event Processing Point 

FoF Factories of the Future 

FP Final Prototype 

HW Hardware 

I&A Identification and Authentication 

IoT Internet of Things 

IIoT Industrial Internet of Things 

IIC Industrial Internet Consortium 

IIRA Industrial Internet Reference Architecture 

IISF Industrial Internet Security Framework 

Impl Implemented 

IT Information Technology 

LDAP Lightweight Directory Access Protocol 

NGAC Next Generation Access Control 

OE Operating Environment (operating system) 

OS Operating System (operating environment) 

PAP Policy Access/Administration Point 

PDP Policy Decision Point 

PEI Policy Enforcement Interface 

PEP Policy Enforcement Point 

PImpl Partially Implemented 

PIP Policy Information Point 

PM Policy Machine 

PQI Policy Query Interface 

RAI Resource Access Interface 

RAP Resource Access Point 

RI Reference Implementation 

SOPS System of Production Systems 

SPTM Security Privacy and Trust Methodology/Mapping 

SSF SAFIRE Security Framework (or SAFIRE SPT Framework) 

SW Software 

TBI To Be Implemented 

UC Use Case 

3PSM Third Party Security Mechanisms 

  



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page ix 

Confidentiality: Public Distribution 

EXECUTIVE SUMMARY 

This document describes the full prototype of the software implementing the 

functionality of the SAFIRE Security Privacy and Trust Framework as specified in 

deliverable D5.5 and implementing the methodology described in deliverable D5.1, 

thereby demonstrating the features and functionality of security services for the 

SAFIRE solution.  

The document provides a description of the SAFIRE implementation of the NGAC 

standard, including the policy tool, the policy server, and the policy specification 

language. It also describes the integration with other modules and the functional 

architecture within which the components are to be deployed, and examples of how they 

can be used. Installation and Operation of the full prototype software are addressed, 

along with guidance for customisations for addressing diverse manufacturing 

applications where SAFIRE may be deployed. 





 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 1 

Confidentiality: Public Distribution 

1. INTRODUCTION 

1.1. OVERVIEW 

As introduced in D5.2 Early Specification of the SPT Framework, and finalized in D5.5 

Final Specification of the SPT Framework, the SAFIRE security, privacy and trust 

effort intends to address two SAFIRE-relevant security challenges, and has two 

principal thrusts in SAFIRE. These comprise the SAFIRE Security Framework (or 

SAFIRE SPT Framework) (SSF): 

 To address Security Challenge 1, that of being able to know the aggregate 

security policy of the various policies independently enforced, according to their 

configuration data, by distinct security mechanisms used within a complex 

system: An implementation of the Next Generation Access Control (NGAC) 

standard, that will provide the ability to specify aspects of policies 

corresponding to distinct segments or mechanisms within the system, and to 

compose those policy aspects to gain a unified and computable representation of 

the composed policy. 

 To address Security Challenge 2, that of being able to assess the initial adequacy 

of the constellation of chosen security mechanisms and their respective 

configurations, and their continuing adequacy after a reconfiguration or 

optimisation has been applied: A comprehensive approach to security using the 

Industrial Internet Consortium (IIC) Security Framework (IISF) as guidance for 

the kinds of security functions that should be considered in a mission-critical 

industrial deployment of SAFIRE within a System of Production Systems 

(SOPS) Factories of the Future (FoF) setting. 

1.2. APPROACH APPLIED 

The first thrust, identified above, is realized by a software implementation of the NGAC 

standard that embodies one of the innovations of the SAFIRE project. The second thrust 

is realized by a methodology to assess the appropriateness and adequacy of security 

mechanisms chosen for a particular deployment, including those of the underlying 

platform as well as those provided by the NGAC implementation. 

This document, D5.3 Early Prototype, describes the content of the first prototype of the 

NGAC implementation. The companion document, D5.1 Methodology, elaborates the 

methodology for the application of the IISF as well as methodology for the use of the 

software components of the NGAC policy specification and enforcement mechanisms. 

The SAFIRE software portion of the SPT Framework includes: 

 The policy tool (‗ngac‘) 

 The lightweight server (‗ngac-server‘) 

 A functional architecture for using the ‗ngac‘ tool and ‗ngac-server‘ 



D5.4 Full Prototype of the SPT Framework  

Page 2 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

1.3. DOCUMENT STRUCTURE 

The document consists of: 

 Section 1. Introduction—which describes the purpose of this document, and 

provided a brief overview of the contents of the document. 

 Section 2. Description of the NGAC Full Prototype (FP)—our implementation 

of the NGAC standard, including the policy tool, the policy server, and the 

policy specification language. 

 Section 3. Integration with other modules—describes the functional architecture 

in which the NGAC components are to be applied, and examples of how they 

should be used. 

 Section 4. Installation and Operation—describes how to install and operate the 

NGAC FP components and how to invoke them from other components of the 

functional architecture. 

 Section 5. NGAC Customisation—describes how NGAC can be customised for 

diverse applications. 

 Section 6. Software Tools—identifies the software tools used for the 

implementation. 

 Section 7. Conclusions and Plans. 

 Section 8. References. 

 APPENDIX A—Provides expanded background on NGAC. 

 APPENDIX B—Provides a brief discussion of NGAC-based policy 

specification representations. 

 APPENDIX C—Presents a methodology for developing an NGAC policy and 

expressing it in the declarative policy language, including development of a 

policy for ONA. 

 APPENDIX D—Provides an analysis of opportunities to apply NGAC within 

the Industrial Internet Security Framework. 

 

  



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 3 

Confidentiality: Public Distribution 

2. DESCRIPTION OF THE NGAC FULL PROTOTYPE (FP) 

The functional architecture of NGAC as realized in the SAFIRE Project is depicted in 

Figure 1. We will refer frequently to the components of the functional architecture 

introduced in this figure. A summary of NGAC can be found in   APPENDIX A – Next 

Generation Access Control, and standards and other background can be found in 

documents enumerated in Section 11 REFERENCES. 

 

Figure 1: TOG NGAC functional architecture with "unbundled" PEP & RAP 

The logical and functional components of the NGAC Full Prototype implementation for 

SAFIRE are: 

 Enhanced declarative policy specification language (DPL) supporting modular 

policies and policy composition; 

 Enhanced Policy Tool (‗ngac‘) for doing standalone policy development and 

testing; recognizes and provides semantics for the DPL, providing the ability to 

query a policy under development; 

 Policy Server (‗ngac-server‘) with RESTful APIs providing the Policy Query 

Interface and the Policy Administration Interface; 

o Policy Access Point (PAP) implementing the Policy Administration 

Interface and a Policy Information Point (PIP) policy store, also provided 

within the Policy Server; 



D5.4 Full Prototype of the SPT Framework  

Page 4 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

 Policy Enforcement Point template providing the Policy Enforcement Interface; 

and, 

 Resource Access Point template using the Resource Access Interface. 

Each of these components will be described in the following sections. 

2.1. DECLARATIVE POLICY LANGUAGE 

The NGAC full prototype represents a lightweight implementation of the NGAC 

standard. During the course of the implementation of NGAC we have developed 

alternative policy representations, including an alternative representation of the 

reference implementation‘s imperative language and our own declarative policy 

language (DPL). We envision future development of the DPL to include additional 

features to facilitate the specification of complex policies for enterprise-wide use and 

conditional dynamic policy change. 

The declarative policy language recognized by the ‗ngac‘ policy tool and the ‗ngac-

server‘ policy server is used to directly declare the entities of a policy and the relations 

among them. The declarative language is an attractive alternative to using an imperative 

policy construction language as it is much more natural and intuitive.  

2.1.1. Declarative Policy Language Definition 

A declarative policy specification is of the form: 

policy( <policy name>, <policy root>, <policy elements> ).  

where, 

<policy name> is an identifier for the policy definition  

<policy root> is an identifier for the policy class defined by this definition  

<policy elements> is a list [ <element>, ... , <element> ]  

where each <element> is one of: 

user( <user identifier> )  

user_attribute( <user attribute identifier> )  

object( <object identifier> )  

object( <object identifier>, <object class identifier>, <inh>, <host name>, 

<path name>, <base node type>, <base node name> )  



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 5 

Confidentiality: Public Distribution 

object_attribute( <object attribute identifier> ) 

policy_class( <policy class identifier> ) 

composed_policy( <new policy name>, <policy name1>, <policy name2> ) 

operation( <operation identifier> )  

opset( <operation identifier>, <operations> )  

assign( <entity identifier>, <entity identifier> )  

associate( <user attribute id>, <operations>, <object attribute id> ) 

where <operations> is a list: 

[ <operation identifier>, ... , <operation identifier> ] 

connector( 'PM′ )  

The initial character of all identifiers must be a lower-case letter or the identifier must 

be quoted with single quotes, e.g. smith or ’Smith’ (identifiers are case sensitive so these 

examples are distinct). Quoting of an identifier that starts with a lower-case letter is 

optional, e.g. smith and ’smith’ are not distinct. 

Additionally: 

< inh > can be yes or no. (this parameter is currently not used) 

< host name> contains the name of the host where the corresponding file system object 

resides. 

< path name> is the complete path name of the corresponding file system object. 

2.1.2. Example policy in declarative representation 

In APPENDIX B, Section 13.1, Figure 11, two examples, (a) and (b), of NGAC policies 

are presented in graphical form. These examples provide a good generic reference 

because they are simple, well developed and well explained in the NGAC literature. 

Figure 2 presents example (a) in the declarative policy language representation. 

The figure represents a run of the ‗ngac‘ policy tool in which the stored procedure 

―testA‖ is run with the verbose switch on. The procedure sets the current policy to 

‗Policy (a)‘ and runs some analysis queries against the policy, including, in the right-

hand column, access queries such as: 

access(‘Policy (a)’, (u1,r,o1)), 



D5.4 Full Prototype of the SPT Framework  

Page 6 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

highlighted in Figure 2 with a red ellipse. Inset in the figure is the graphical 

representation with the path in the graph highlighted that enables the permit response. 

 

Figure 2: Example policy (a) expressed in the declarative representation 

The ‗ngac‘ tool has also been implemented with a built-in test framework that permits a 

customizable set of test cases to be easily integrated and run as a regression test suite 

with a single command. The test cases include of both access queries that correspond to 

the Policy Query Interface of Figure 1 and other testing queries that expose intermediate 

internal results of policy calculations for diagnostic use as are shown in Figure 2. The 

‗ngac‖ policy tool is described in more detail in the following section. 

2.1.3.  Implementation 

Policies in the NGAC policy framework are represented as a directed graph, formed by 

users, objects, attributes, and relations among these. A policy developer may draw a 

policy graph diagram and directly translate it into the declarative policy language. 

We chose to implement NGAC in Prolog, which is well suited to this problem for 

several reasons, among which are the natural way such entities and relations can be 

represented in Prolog, its ease of expressing and compactness of graph computations (in 

large part declaratively), the ease of doing linguistic and symbolic manipulations, its 

useful libraries, and its suitability for prototyping. Conversions among various internal 

and alternative external representations of languages and structures are easily 

accomplished in Prolog. Little code is needed to convert the external representation of 

the DPL into an internal form that is more suitable for performing policy computations. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 7 

Confidentiality: Public Distribution 

The internal form of one or more policy specifications expressed in the DPL are stored 

in the PIP through the PAP. From there they may be selected, referenced and combined 

by functions of the PAP, and they may be used by the PDP for making policy decisions. 

The semantics of a stored policy are provided by the graph computations over the 

internal form of the policy graph in the PDP. 

The external syntax of the DPL is embedded in the general syntax of terms as are 

amenable for reading by the Prolog reader routines. As used by the DPL, the syntax 

elements borrowed from Prolog are only the characters ―(―, ―)‖, ―[―, ―]‖, ―,‖, ― ‗ ―, and 

―.‖. All other elements of the policy language are alphanumeric names (including ―_‖) 

and numbers. Names that start with a capital letter must be placed in single quotes. 

Names starting with a lower-case letter need not be quoted, though they may be. 

2.2. ‘NGAC’ POLICY TOOL 

The ‗ngac‘ policy tool enables standalone policy development and testing of NGAC 

policies. This can be very useful as it does not require a user to arrange for an instance 

of the policy server to be run at a particular port, or to be concerned with the additional 

complication of constructing programs to invoke the policy server‘s APIs to load and 

test the policy. 

The policy tool also provides its user with the ability to examine at the storage of 

policies and intermediate results of policy calculations. The tool also has the ability to 

start an instance of the policy server when the user is ready to test an access policy that 

is used by a client application that accesses resources through an NGAC Policy 

Enforcement Point (PEP). During such a session the user may continue to interactively 

test and modify the policy that the server is using to respond to HTTP queries from the 

client application being tested. This provides flexibility in how testing can progressively 

be done as a policy is developed and transitioned into production use. 

The ‗ngac‘ Policy Tool is an interactive command driven application. After starting 

‗ngac‘ it offers the prompt ―ngac>‖. There are basic commands available in the normal 

mode (admin) and an extended set of commands for use by a developer in development 

mode (advanced). Advanced commands not accepted in administrator mode. Entering 

the command ―help‖ will list the available commands in the current mode. The 

commands admin and advanced are used to change modes. By default the ‗ngac‘ 

tool starts in advanced mode; this can be changed in the parameter file and the tool 

recompiled. 

The ‗ngac‘ policy tool uses the declarative policy representation to build an internal 

database that represents the graph of the policy and associated information, and it 

includes logic to query the database and to perform graph analysis to compute access 

decisions. The tool also includes commands to load and manipulate policies. 

2.2.1. Policy tool interactive commands 

The ‗ngac‘ Policy Tool is a command driven application. After starting ‗ngac‘ it offers 

the prompt ―ngac>‖. There are a set of basic commands available in the normal mode 

(admin) and an extended set of commands for use by a developer in development mode 



D5.4 Full Prototype of the SPT Framework  

Page 8 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

(advanced). Entering the command ―help‖ will list the available commands in the 

current mode. Only the most commonly needed normal mode (admin) commands are 

introduced here. 

 access( <policy name>, <permission triple> ). 

Check whether a permission triple is a derived privilege of the policy. 

 admin. 

Switch to admin (normal) user mode. 

 advanced. 

Switch to advanced user mode. 

 aoa( <user> ). 

Show the user accessible object attributes of the current policy. 

 combine( <policy name 1>, <policy name 2>, <combined policy name> ). 

Combine two policies to form a new combined policy with the given name. 

 dps( <policy name> ). 

Show derived privileges of the specified policy. 

 echo( <string > ). 

Print the argument string, useful in command procedures. 

 halt. 

Exit the policy tool. (Will also terminate spawned server.) 

 help. 

List the commands available in the current mode. 

 help( <command name> ). 

Give a synopsis of the named command. 

 import_policy( <policy file> ). 

Import a declarative policy file and make it the current policy. 

 newpol( <policy name> ). 

Set the named policy to be the new current policy. 

 nl. 

Print a newline, useful in command procedures. 

 policy_graph. 

Display the current policy. Temporary files are created in the GRAPHS directory and removed at 

the end of the command execution. The GRAPHS directory is created if it does not exist. The 

rendered image is displayed on the console. 

 policy_graph( <policy name> ). 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 9 

Confidentiality: Public Distribution 

Display the named policy. The specified name can be ―current_policy‖. Temporary files are 

created in the GRAPHS directory and removed at the end of the command execution. The 

GRAPHS directory is created if it does not exist. The rendered image is displayed on the console. 

 policy_graph( <policy name>, <file base name> ). 

Generate the graph for the named policy and store the Dot language version in the file 

GRAPHS/<file base name>.dot and the rendered graph in the file GRAPHS/<file base 

name>.png. The GRAPHS directory is created if it does not exist. The rendered image is 

displayed on the console. 

 proc( <procedure name> [, step] ). 

Run the named command procedure, optionally pausing after each command. 

 proc( <procedure name> [, verbose] ). 

Run the named command procedure, optionally verbose. 

 quit. 

Terminate the ngac command loop or script, but stay in Prolog top level. 

 regtest. 

Run built-in regression tests. 

 script( <file name> [, step] ). 

Run the named command file, optionally pausing after each command. 

 script( <file name> [, verbose] ). 

Run the named command file, optionally verbose. 

 selftest. 

Run built-in self tests. 

 server( <port > ). 

Start the policy server on the given port number. 

 server( <port >, <admin token > ). 

Start the policy server on the given port number, and require given admin token 

to be supplied by callers as authenticator. 

 version. 

Display the current version number and version description. 

 versions. 

Display past and current versions with descriptions. 

There are, and may in the future be, additional advanced user commands to support 

development and diagnostics. 

2.2.2. Command procedures and scripts 

There are predefined ‗ngac‘command procedures (―procs‖) that run the examples and 

can be used for testing and demonstrations. At the ―ngac>‖ prompt a predefined 

procedure (e.g. named ―myproc‖) can be run with the command proc(myproc). It 



D5.4 Full Prototype of the SPT Framework  

Page 10 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

can be run with verbose output with the command proc(myproc,verbose). It 

can be made to prompt and wait for user instruction to proceed (empty line input) with 

the command proc(myproc,step). 

It is instructive to read the file procs.pl that defines the predefined procedures. The 

procedures utilise the same commands available at the command prompt. The user may 

define additional procedures in the procs.pl file for subsequent execution as above. 

A sequence of ‗ngac‘ commands can also be stored in a file, in which case it is referred 

to as a script. Scripts may be run with a script command, analogous to the proc 

command, with the script file name substituted for the stored procedure name. 

verbose and step are valid options also for the execution of scripts. 

2.2.3. Policy Graph Display 

A graphical rendering of loaded policies may be displayed on the console and optionally 

sent to a file by the policy_graph commands. To generate the graphical display the 

‗ngac‘ Policy Tool converts the policy specification into a stylized-for-NGAC-policies 

graph description in the Dot language, which is subsequently rendered using the 

dot/graphviz tools. 

The graph display capability is new and experimental. An effort has been made to cause 

the graphs to be laid out in the manner that is customary for NGAC policies, and our 

examples produce acceptable results. Nonetheless, some complex policies may produce 

unexpected results; which is expected to improve over time with tuning as the 

technology matures. The implementation is structured to allow additional layout 

heuristics to be incrementally added. With additional examples and tuning it is expected 

that pleasing output can be produced for an increasing number of cases. 

Some examples of the policy_graph feature are included in this updated version of 

D5.4 in Appendices B and C. 

2.2.4. Implementation 

The ‗ngac‘ policy tool is structured as an interactive or script-driven command 

interpreter that invokes a collection of command functions and supporting functions. 

The Policy Tool defines the ‗ngac‘ command language syntax, semantics, and help text 

as a collection of declarations that can be easily extended. The command interpreter‘s 

top-level loop reads a user command and then uses the provided definitions to check the 

command before calling the associated command function to carry out the requested 

command. The command interpreter also offers developer aids such as internals 

inspection and selective tracing of commands for development and debugging of the 

tool itself. 

The command functions are grouped according to categories: definition and processing 

of the declarative policy language, input and output of policy representations, policy 

representation conversions, computations over the internal policy representation 

including access queries, an extensible self-test framework with built-in test cases, and a 

few utility functions. The command interpreter can also run ‗ngac‘ command 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 11 

Confidentiality: Public Distribution 

procedures that may be predefined in one of the source files of the tool or in scripts that 

may be provided in files by the user. 

To summarize, the ‗ngac‘ command interpreter is thus extensible in several ways: 

 The addition of new commands to directly access or combine any functionality al-

ready available within the tool, or with a new command function. 

 A self-test framework implemented in the test module permits addition of tests for 

specific modules. These tests can be run automatically at startup or on demand. 

 Predefined ‗ngac‘ command procedures may be added to the procs module. 

 Global parameters are settable in the param module. 

The syntax and simple semantic checking of commands are achieved declaratively, and 

the addition of a new command is straightforward. There are two levels of commands: a 

restricted set for ordinary policy administrators and an expanded set that includes 

commands that are primarily of use to the tool developers. The current command set is 

determined by the current value of a parameter and it may be changed by a command. 

The extension capability has been used heavily during development and will be useful 

also as capabilities continue to be added in the future.  

The implementation of the ‗ngac‘ policy tool is comprised of the following Prolog 

modules: 

 ngac.pl – top level module of ‗ngac‘ policy tool; entry point and initialisation 

 param.pl – global parameters 

 command.pl – command interpreter and definition of the ‗ngac‘ commands 

 common.pl – simple predicates that may be used anywhere 

 pio.pl – input / output of various policy representations 

 policies.pl – example policies used for built-in self-test 

 test.pl – testing framework for self-test and regression tests 

 procs.pl – stored built-in ‗ngac‘ command procedures 

 pmcmd.pl – PM command representations and conversions 

 spld.pl – security policy language definitions 

The ‗ngac‘ tool is able to generate from the declarative form of a policy the equivalent 

imperative form for interoperation with the reference implementation. In the future this 

capability will be adapted to extend the testing framework to support testing of dynamic 

policy change in the server by generating calls to the policy administration APIs of the 

policy server to effect incremental changes to policies currently loaded into the server, 



D5.4 Full Prototype of the SPT Framework  

Page 12 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

thereby simulating policy modification by administrative programs using the Policy 

Administration Interface. 

2.3.  ‘NGAC-SERVER’ POLICY SERVER 

The ‗ngac-server‘, developed primarily on the SAFIRE project, is described as 

―lightweight‖ as it is much smaller, much easier to extend, virtually no external 

dependencies and much more portable than the past reference implementations.
1
 The 

Policy Server embodies the following components of the NGAC Functional 

Architecture: Policy Decision Point (PDP), Policy Access/Administration Point (PAP), 

and the Policy Information Point (PIP) for policies actively in use at run time.  

The policy server may be initiated from within the ‗ngac‘ tool by issuing the command 

server( <port> ), or other variations of the command, at the tool‘s command 

prompt ―ngac>‖. It may also be initiated by executing the compiled file at the operating 

system‘s command prompt. 

The ‗ngac-server‘ currently provides two external interfaces, both implemented as 

RESTful APIs: 

 Policy Query Interface – used by a Policy Enforcement Point to query whether a 

given access should be permitted under the current policy. 

 Policy Administration Interface – used by a privileged ―shell‖, ―portal‖ or other 

system program to load and unload policies, combine policies, select policies, 

etc., for NGAC client applications that will subsequently be run by the shell. 

Each of these interfaces will now be described in further detail. 

2.3.1. Policy Query Interface (PQI) 

The PQI is a relatively simple interface, in the form of RESTful APIs. 

This interface is used by a Policy Enforcement Point to determine whether a client 

application-requested operation is supported by the associated user‘s permissions on the 

requested object under the current policy, and, if the operation is permitted and the 

resource location is not already known to the PEP, where the object may be accessed 

through an appropriate Resource Access Point (RAP). 

pqapi/access – test for access permission under current policy 
Parameters 

 user = <user identifier> 

 ar = <access right> 

 object = <object identifier> 

Returns 

 ―permit‖ or ―deny‖ based on the current policy 

 ―no current policy‖ if the server does not have a current policy set 

Effects 

 none 

                                                           
1
 Due to serious difficulties encountered in working with the reference implementations on past 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 13 

Confidentiality: Public Distribution 

pqapi/getobjectinfo – get object metadata 
Parameters 

 object = <object identifier> 

Returns 

 ―object=<obj id>,oclass=<obj class>,inh=<t/f>,host=<host>, 

path=<path>,basetype=<btype>,basename=bname>‖ 

Effects 

 none 

 

An active session identifier may be used as an alternative to a user identifier in an 

access query made to the Policy Query Interface. Session management APIs are among 

the functions available in the Policy Administration  Interface. 

2.3.2. Policy Administration Interface (PAI) 

The Policy Administration Interface is now a separate interface (different to the EP). As 

in the EP, policy administration may still be done through the policy tool‘s command 

line interface, but in the FP it is best done through the server‘s RESTful Policy 

Administration API.  

In keeping with the principle of least privilege, the policy administration functions 

should not be made available to the normal object PEPs. Rather the Policy 

Administration API should be accessible only to an administratively authorised user 

through the policy administration tool, and some functions such as setpol/getpol should 

be accessible only to the ―shell‖ program that executes the NGAC client application. In 

this way, the ―shell‖ that controls execution of the application would also determine the 

user/session and policy under which the application should execute. Putting the policy 

administration APIs in a different location will facilitate limiting their accessibility. 

Further, the policy administration API requires pre-authentication and the presentation 

of a token with each API call that the caller obtains through a trusted handoff.  

The enhanced server offers the following APIs as the Policy Administration Interface. A 

―failure‖ response is typically preceded by a string indicating the reason for the failure. 

Implicit in each of the following APIs is an additional parameter, token, which is an 

arbitrary string. The token provided in the call must match the token provided to the 

server when it was started. 

paapi/getpol – get current policy being used for policy queries 
Parameters 

 none 

Returns 

 <policy identifier> or ―failure‖ 

Effects 

 none 

paapi/setpol – set current policy to be used for policy queries 
Parameters 

 policy = <policy identifier> 

Returns 

 ―success‖ or ―failure‖ 

 ―unknown policy‖ if the named policy is not known to the server 



D5.4 Full Prototype of the SPT Framework  

Page 14 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

Effects 

 sets the server‘s current policy to the named policy 

paapi/add – add an element to the current policy 
Parameters 

 policy = <policy identifier> 

 policyelement = <policy element>   only user, object, and assignment elements as de-

fined in the declarative policy language; restriction: only user to user attribute and ob-

ject to object attribute assignments may be added. Elements referred to by an assign-

ment must be added before adding an assignment that refers to them. 

Returns 

 ―success‖ or ―failure‖ 

Effects 

 The named policy is augmented with the provided policy element 

paapi/delete – delete an element from the current policy 
Parameters 

 policy = <policy identifier> 

 policyelement = <policy element>   permits only user, object, and assignment elements 

as defined in the declarative policy language; restriction: only user-to-user-attribute and 

object-to-object-attribute assignments may be deleted. Assignments must be deleted be-

fore the elements to which they refer. 

Returns 

 ―success‖ or ―failure‖ 

Effects 

 The specified policy element is deleted from the named policy 

paapi/load – load a policy file into the server 
Parameters 

 policyfile = <policy file name> 

Returns 

 ―success‖ or ―failure‖ 

Effects 

 stores the loaded policy in the server 

 does NOT set the server‘s current policy to the loaded policy 

paapi/combinepol – combine policies to form new policy 
Parameters 

 policy1 = <first policy name> 

 policy2 = <second policy name> 

 combined = <combined policy name> 

Returns 

 ―success‖ or ―failure‖ 

 ―error combining policies‖ if the combine operation fails for any reason 

Effects 

 the new combined policy is stored on the server 

paapi/unload – unload a policy from the server 
Parameters 

 policy = <policy name> 

Returns 

 ―success‖ or ―failure‖ 

 ―unknown policy‖ if the named policy is not known to the server 

Effects 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 15 

Confidentiality: Public Distribution 

 the named policy is unloaded from the server 

 sets the server‘s current policy to ―none‖ if the unloaded policy is the current policy 

paapi/initsession – initiate a session for user on the server 
Parameters 

 session = <session identifier> 

 user = <user identifier> 

Returns 

 ―success‖ or ―failure‖ 

 ―session already registered‖ if already known to the server 

Effects 

 the new session and user is stored 

paapi/endsession – end a session on the server 
Parameters 

 session = <session identifier> 

Returns 

 ―success‖ or ―failure‖ 

 ―session unknown‖ if not known to the server 

Effects 

 the identified session is deleted from the server 

 

2.3.3. Policy server command line arguments 

When the compiled version of the policy tool or the policy server is started from a shell 

command line, several command line options (and synonyms) are recognized. 

 --token, -t  <admintoken> use the token make authenticated requests to the 

paapi 

 --deny, -d respond to all access requests with deny 

 --permit, --grant -g respond to all access requests with grant 

 --import, --policy, --load, -i,  -l  <policyfile>   import the policy 

file on startup 

 --port, --portnumber, --pqport, -p  <portnumber>   server should 

listen on the specified port number 

 --selftest, -s run self tests on startup 

 --verbose, -v show all console messages 

2.3.4. Protection of the policy administration interface 

The policy administration functions should not be made available to the normal object 

PEPs. Rather the Policy Administration API should be accessible only to an 

administratively authorised user through the policy administration tool or a process with 

the same authorisation, and some functions such as setpol/getpol should be accessible 



D5.4 Full Prototype of the SPT Framework  

Page 16 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

only to the ―shell‖ program that executes the NGAC client application. In this way, the 

―shell‖ that controls execution of the application would also determine the user/session 

and policy under which the application should execute. The administrative token is used 

to recognize authorized callers. The system initialization procedure that starts the policy 

server generates a new administrative token, communicates it to the server though the 

token command line option, and distributes it to processes that are authorized to call the 

PAAPI. The initiation procedure is discussed in more detail in Section 3.6. 

If the Policy Server is started without the token option it will use the default admin 

token defined in the parameter module in param.pl. The default is ‗admin_token‘. This 

default can be used in a benign environment or for development and testing. Note 

however that in a production environment where the Policy Administration Interface is 

not protected with a fresh token an untrusted process would be able to manipulate the 

policy being used by the Server, effectively tampering with the access control reference 

monitor. 

2.3.5. Dynamic policy change 

However, it does support dynamic total policy change: the ability to load new policies, 

to form new policies composed of already loaded policies, and to select from among the 

loaded or composed policies that policy which is to serve as the policy used to make 

policy decisions. A policy selection remains in effect until a subsequent policy 

selection. The server retains all of the loaded and composed policies for the duration of 

its execution. In addition, the current implementation of the ‗ngac-server‘ offers limited 

dynamic selective policy change after a policy is loaded or formed by combining 

policies. The add and delete APIs provide this capability. Details of the limitations are 

provided in the description of the APIs. 

The current implementation of the PIP is ephemeral. There is no persistence of the 

policy database except in the original policy file(s) used to initialize the server and the 

sequence of commands issued to the server to modify policies after loading of policy 

files.  

2.3.6. Policy Composition 

The policy server supports two forms of policy composition. The first is achieved with 

the comebinepol API. It forms the composition of policies as described in the NGAC 

literature and examples. 

The all policy composition is a distinct form of policy composition. When the policy 

server‘s current policy is set to all through the setpol API, all currently loaded policies 

are automatically combined for every access request. The manner in which the polices 

are combined is as follows: 

 Every policy is first qualified to participate in computing the verdict of an access 

request. To qualify a policy must be defined to have explicit jurisdiction over 

both the user and the object specified in the access request. There must be at 

least one qualifying policy. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 17 

Confidentiality: Public Distribution 

 All qualified policies are queried with the triple (user, access right, object) 

specified in the access request. If any qualified policy returns ‗deny‘ then the 

access request returns ‗deny‘. 

Sets of policies to be combined according to the all policy composition must be 

designed with the foregoing access runtime semantics taken into consideration. Under 

normal composition, access consults all policy classes in the applied policy 

2.3.7. Auditing 

The ‗ngac-server‘ provides a basic auditing facility for use within NGAC that generates 

a log of audit records based on the current audit configuration. The audit facility is 

accessed through an internal interface consisting of audit_gen, audit_set, audit_select, 

and audit_deselect operations. The generation of audit events is done by calls to the 

audit_gen operation, which is used to report auditable events. The information 

associated with an audit event is: a timestamp of the time of creation of the audit event, 

the source module or subsystem, the event name, and arbitrary data associated with the 

event. 

A reported audit event results in an audit log record if the event corresponds to one of a 

set of currently selected audit events established with audit_set, audit_select, and 

audit_deselect. The audit records for selected events are forwarded to the system 

logging facility through an OS-provided interface and/or they may be stored in a local 

audit log file according to a server configuration option. A straightforward extension 

would enable audit records to be sent over a trusted channel to an audit server in cases 

where greater integrity of the audit storage is required. 

2.3.8. Implementation 

The implementation of the ‗ngac-server‘ lightweight policy server is comprised of the 

following Prolog modules: 

 server.pl – HTTP server for the policy query API and policy admin API 

 sessions.pl – registration of session identifiers and associated users to enable 

sessions identifiers to be used in place of the user in an access request for the 

life of the session. 

  



D5.4 Full Prototype of the SPT Framework  

Page 18 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

2.4. REQUIREMENTS, OBJECTIVES AND RESULTS OF THE FP 

2.4.1. Setting the objectives 

SAFIRE is conceived as an add-on to an existing manufacturing system. It is intended 

to enhance the operation of its host system by its presence but should not prevent the 

host system from operating by its absence. This presents some challenges for the 

security component of the SAFIRE effort because of the interplay between the existing 

security features of the host system and of its supporting platform with existing but not 

necessarily compatible security features of the additional third party ICT technology 

components used by SAFIRE (such as Kafka, NiFi, Docker, Spring, Cassandra and 

Spark). 

We presented rationale for the approach taken to the SPT Framework in the Final 

Specification of SPT Framework [SAF D5.5], sections 2 and 3. We also noted the scope 

of those functional building blocks identified by the IISF that were implemented as part 

of the SAFIRE effort. 

An industrial environment into which SAFIRE is introduced already represents a unique 

identified security problem. The implementation of a solution to the security problem is 

complex and costly. It is the purview of an information systems department of the 

organisation that owns and operates the underlying IT infrastructure, and perhaps that a 

more specialized information systems security unit within the information systems 

department. 

The solution to the security challenges faced by the underlying system depend on the 

assessed threats faced, the value of the assets, the information security policies of the 

organisation, the protections afforded by the operational environment, the choices for 

the underlying information systems technology, the chosen security features, and the 

security products chosen to provide those features. The assembly of security products, 

operational procedures, and personnel practices form a comprehensive solution that 

suits the needs of the organisation. 

Because of the magnitude of this first challenge, the second challenge for the SAFIRE 

Project becomes deciding on what specific efforts to pursue in order to enhance the 

SAFIRE solution and provide incremental benefit to the underlying system with the 

necessarily limited resources allocated to SPT within the SAFIRE project. 

Thus we sought to target the SPT effort not by focusing on the overall security problem 

confronted by the underlying system to which SAFIRE is added, but by looking within 

SAFIRE‘s distinguishing characteristics for security-relevant challenges that either 

arise because of, or are exacerbated by, the ways in which the SAFIRE augmented 

system is different to the non-SAFIRE system. 

What we discovered is that the SAFIRE augmented system, and in particular the 

considerable array of new third party components each with their own approach to 

security made the environment chaotic. Certainly the diversity of components and their 

approach to security was perhaps the defining challenge that arose because of or was 

exacerbated by SAFIRE. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 19 

Confidentiality: Public Distribution 

(recall that SAFIRE is an enhancing add-on to an existing system) 

To identify appropriate SPT objectives of the SAFIRE Project we sought to define an 

appropriate scope for the SPT effort. This effort is not intended to result in a 

comprehensive implementation of SPT as an outcome of the project. To pursue such a 

comprehensive solution would be ill-advised for several reasons. 

1. It would be impossible to implement di nuovo all of the components of a 

comprehensive SPT solution because of the effort and cost, and it would be 

foolish to do so in any event, because there are abundant choices among both 

open source and proprietary solutions for most aspects of the needed security 

features. 

2. It is unreasonable to expect that existing enterprises will abandon their 

investments in their own existing IT security solutions.  

3. Security is an invasive discipline and it is not possible to ―add on‖ security 

mechanisms to an existing system that already has security without 

reconfiguring the security measures that are already there to share or delegate 

control. The IT departments with existing security approaches will not easily 

abandon their stable solutions, and in particular will not be willing to (nor be 

expected to) modify their existing production infrastructure to depend upon a 

research prototype. 

It would be a worthy goal to ultimately reduce the chaos of myriad access control 

solutions by providing one that could replace many of them. Thus we sought to provide 

a unifying policy and access control approach that would be sufficiently flexible and 

fine-grained to be a potential replacement for numerous diverse mechanisms currently 

employed in production systems, or in the combination of a production system with a 

SAFIRE add-on. 

Consequently we identified a two-pronged approach: 

 implementing the NGAC policy tool and policy server to make inroads on the 

problem of system policy specification and configuration, while delegating 

routine security issues to features already provided by a combination of the 

operating environment and chosen third party security products implemented by 

the IT department; 

 mapping from the IISF to the Abstract Platform, intended to identify the 

implementation of those building blocks in the actual deployment (or to identify 

the assumptions that establish requirements on the environment in a deferred 

deployment). 

2.4.2. Fulfillment of the Requirements 

The use case requirements and how they are fulfilled by the functionalities represented 

in the Full Prototype and the supporting IT environment are summarized in Table 1. We 

allocate to the ―abstract platform‖ (AP) the security features assembled by the IT 



D5.4 Full Prototype of the SPT Framework  

Page 20 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

department in the given base system, or to ―NGAC‖ those addressed by the FP 

implementation. Many of the use case conventional security requirements are already 

addressed by the IT operating environment. 

It is appropriate and expected that many security requirements originating from 

industrial use cases, which are based on existing implementations and infrastructure, 

will be fulfilled by the abstract platform that is a use case‘s operating environment. The 

Abstract Platform is ―implemented‖ by the final mapping of the necessary IISF 

functional building blocks to the elements of a specific deployment on a specific OE 

with particular selection of 3PSM. This is accomplished according to guidelines 

provided by the methodology and subject to a risk analysis of the specific environment. 

Abbreviations used in Table 1 are: OE – Operating Environment (OE = OS + HW), 

3PSM – Third Party Security Mechanisms, AP – Abstract Platform (AP = OE + 3PSM), 

EP – Early Prototype, FP – Final Prototype, UC – Use Case, App – Application, SPTM 

– Security, Privacy and Trust Methodology/Mapping, Impl – Implemented, DSI – 

Deployment-Specific Implementation. 

Table 1: Overview of use case requirements and how they are fulfilled 

No. Requirement Overall 
Priority 

Status 

U94 Ensures data integrity SHALL Delegated to the AP 

U95 Prevents unauthorized access SHALL Impl by NGAC FP with AP support, subject 

PEP/RAPs and UC App adaptation DSI 

U96 Provides secure access to generated 
knowledge in the cloud 

SHALL Impl by NGAC FP with AP support, subject 

PEP/RAPs and UC App adaptation DSI 

U98 Provides at least the same level of security 
as afforded by the operating environment 

SHALL Level commensurate with that afforded by 

OE, cannot provide greater 

U99 Support for different user roles for secure 
access control 

SHALL Impl by NGAC with AP support 

U100 Supports established authentication 
capabilities (hardware / passwords…) 

SHALL Delegated to the AP 

U101 Provides data confidentiality management 
facilities 

SHALL Impl by NGAC FP with AP support, subject 

PEP/RAPs and illustrative UC adaptation 

U102 Provides secure connectivity from 
machines to cloud 

SHALL Delegated to the AP 

U103 Provides support for VPN connectivity SHOULD Delegated to the AP 

U104 Provides encryption of data at rest locally SHALL Delegated to the AP 

U105 Provides encryption of data at rest in the 
cloud 

SHALL Delegated to the AP 

U106 Provides encryption of data during SHALL Delegated to the AP 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 21 

Confidentiality: Public Distribution 

transport 

U107 Supports the establishment of 
rules/policies of trustworthiness (safety, 
privacy, security, reliability, resilience) 

SHALL Impl by NGAC FP and the SPTM 

U108 Allows sharing of analysis results with 
designated people 

SHOULD Impl by NGAC FP with AP support, subject 

PEP/RAPs and UC App adaptation DSI 

U109 Allows collaboration of designated groups 
for building a knowledge base 

SHOULD Impl by NGAC FP with AP support, subject 

PEP/RAPs and UC App adaptation DSI 

U110 Authenticates who/what is sending data SHOULD Delegated to the AP 

  



D5.4 Full Prototype of the SPT Framework  

Page 22 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

3. GENERAL INTEGRATION OF NGAC  

A single NGAC server instance can hold multiple policies simultaneously and can be 

switched among them or a single policy, or family of policies, can be designed to cover 

multiple domains. Such a policy can employ the NGAC server‘s capabilities for policy 

composition or its ability to operate under a special ―all‖ policy that automatically 

composes all of the loaded policies in a particular way that is subject to some 

configuration options. The family of policies loaded and interpreted together in an ―all‖ 

mode, must be written with the particular semantics of the ―all‖ composition and the 

configuration settings in mind. This approach permits different protection domains to be 

created according to the placement of subjects and objects within the jurisdiction of one 

or more of the policies to be combined. 

Another approach, when there are multiple independent protection domains each of 

which should be subject to its own policy, such as in a large distributed system, multiple 

instances of the NGAC server can be run to serve the clients that are subject to the 

distinct policies of each domain. The NGAC server provides a capability for declaring 

global policies that govern references between domains. 

Furthermore, numerous potential applications of NGAC, in addition to the primary 

mission of endpoint data protection access control, may be possible within the IISF 

catalogue of security functional building blocks. As future SAFIRE installations are 

planned within existing manufacturing scenarios, it is suggested that the Industrial 

Internet Security Framework (IISF) be used to assess the completeness of coverage of 

the security needs that it identifies by the security measures provided both before the 

deployment of SAFIRE by the existing IT/OT
2
 environment, and afterwards taking into 

account the addition of the SAFIRE security policy language and enforcement 

approach. In the process of performing such assessment an organization may consider 

the application of NGAC in additional ways within the infrastructure, that is consistent 

with the organization‘s needs, to achieve an increasingly common approach to policy 

enforcement. 

Appendix D elaborates on ways in which NGAC can be used to support IISF-identified 

security functions. In this section we focus on the general integration of NGAC-aware 

client applications and in the following sections on integration with particular 

subsystems of the SAFIRE infrastructure. 

3.1. NGAC-AWARE CLIENT APPLICATIONS 

An NGAC-aware client application is one that has been adapted to access its controlled 

resources through an NGAC policy mediated interface. This is accomplished by 

modifying the application to replace direct resource access methods with calls to an 

NGAC policy enforcement point (PEP). 

Our approach to the NGAC Functional Architecture has been to ―unbundle‖ the PEPs 

and RAPs from the NGAC core infrastructure and to provide a policy server API that 
                                                           
2
 We employ here the terminology of Information Technology (IT) and Operational Technology (OT) that the IISF uses 

to describe the federation of enterprise information systems with industrial process control systems in modern factories. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 23 

Confidentiality: Public Distribution 

can be called by custom PEPs that are appropriate to the kinds of resources and how 

they are used. This approach places all of the steps needed for the adoption of NGAC 

within the application developer‘s domain and control. 

The Client Application and the PEPs and RAPs for the resources it accesses are all 

developed by the application developer according to a simple architectural pattern 

referred to as the CA/PEP/RAP pattern.  

3.2. CA/PEP/RAP ARCHITECTURAL PATTERN 

Figure 3 focuses on the Resource Access Path first identified in the NGAC functional 

architecture of Figure 1. Client applications (CA) of the NGAC-managed object space 

must request access to objects (resources) through a Policy Enforcement Interface 

provided by a Policy Enforcement Point (PEP). The developer of the CA must create a 

PEP and a RAP for the objects required by the CA, if such a PEP and RAP do not 

already exist for objects of that kind, in order to complete the resource access path. The 

architectural pattern to be used is very straightforward but should be followed faithfully 

if the integrity of the access control is to be maintained. 

 

Figure 3: CA/PEP/RAP pattern forming the resource access path 

A call is made by the PEP to the Policy Decision Point (PDP) in the policy server to 

determine whether a particular access (consisting of: user, access right, object) is 

permitted under the policy before the PEP calls the appropriate RAP to access the 

resource. This call to the PDP may even be stubbed out (returning ‗grant‘) during 

development or in the absence of an operating policy server so that the developer‘s 

work is not hindered. Alternatively, the policy server may be places in a mode in which 

it will respond ‗grant‘ to all access queries without a policy in place. This case 

corresponds to the accessing of the resource by the client without access control. A 

corresponding mode in which all access queries return ‗deny‘ completes the ability to 

test the resource access path for grant and deny conditions. The developer is encouraged 

to develop RAPs that use the same resources and resource servers, hence the same 



D5.4 Full Prototype of the SPT Framework  

Page 24 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

Resource Access Interface that the application would have used in an unmediated 

scenario. 

The CA/PEP/RAP architectural pattern is designed to achieve security through two 

essential characteristics. First, the PEP operates in a distinct process from that of the 

CA, able to be executed under an identity distinct from that of the user on behalf of 

which the CA is operating. The same is true for the RAP. Second, the PEP and the RAP 

are very simple in their purpose and are to be kept very simple in their implementation. 

Thus they are relatively easy to assure by inspection of their code and of the 

permissions given to their executable programs. 

The PEPs and the RAPs, as well as the NGAC server itself, execute as a distinct ‗ngac-

user‘ identity within the host operating system (OS). The intrinsic access control 

mechanisms of the underlying platform OS are used to segregate all NGAC-managed 

objects and to provide access to these objects exclusively to processes executing on 

behalf of the ‗ngac-user‘ identity. 

Finally, in a deployed industrial scenario, where there are enterprise-critical resources 

and potential accessibility by untrusted users and agents, and communications among 

the components of the NGAC functional architecture, the communications among the 

CA, PEP, PDP, and RAP should be configured to be performed over encrypted and 

authenticated sockets. This step requires an additional layer of administration, including 

certificate management, key generation, distribution, and management. These are 

burdensome but well understood activities in practice and for this reason were not done 

in the prototype. 

3.3. PEP/RAP DESIGN, IMPLEMENTATION AND OPERATION 

3.3.1. PEP/RAP Unbundling Rationale 

The PEP and the RAP are ―unbundled‖ from the core implementation of the NGAC 

functional architecture as shown in Figure 1. In this way the efforts of the developers of 

Client Applications (CA) can be decoupled from those of the implementers of the 

NGAC core. In a reference implementation, the PEP and RAP were an integral part of 

the NGAC implementation. This had a some adverse consequences: the (complex) 

implementation needed to be modified and redeployed for each new kind of resource, 

and the modifications of client applications needed to conform to an NGAC-mandated, 

and constraining, policy enforcement interface (PEI) available only in one programming 

language. By unbundling the PEP and RAP the policy enforcement interface is left to 

the discretion of the developer and the protected resource can be accessed at an 

appropriate level of abstraction chosen by the developer. 

It is instructive to consider the differences between an unmediated access scenario and 

the NGAC-mediated access scenario. Suppose an application had been developed to use 

resources directly with no access control mediation. The application accesses the 

resource through an interface provided by the resource server
3
. When NGAC mediation 

is introduced, the code fragment (or a similar code fragment) that previously directly 
                                                           
3
 The resource server implements (or consolidates) and presents the operations that may be performed on the resource. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 25 

Confidentiality: Public Distribution 

accessed the resource is reproduced within the logical perimeter of the access control 

system and uses the existing resource access interface (RAI). The code in the 

Application (now an NGAC Client Application) is replaced with code that uses the 

NGAC-provided Policy Enforcement Interface to access the now Protected Resource. If 

the policy enforcement interface provided by NGAC is not well suited to the 

Application and the Resource this conversion activity can be disruptive to the 

application developer, possibly requiring restructuring or refactoring of the application. 

This will occur, for example, when object-oriented constructs are used to encapsulate 

the implementation of objects. 

To avoid this difficulty, the present implementation of NGAC takes the approach 

reflected in the functional architecture of Figure 1, whereby the PEP and RAP are 

factored out of the rest of the NGAC implementation (here the Policy Server). 

3.3.2. Adapting the Client Application 

Referring to Figure 3, generally, when one takes code that directly references a resource 

access interface out of the application and replaces it with NGAC PEP interface 

references, the removed code will be represented in some form in the RAP portion of 

NGAC as shown in Figure 4.  

 

Figure 4: Adaptation of an application to use NGAC 

The PEP should be limited to marshaling the arguments to the PDP access call and 

determining what RAP to invoke and the needed parameters. Depending on the 

narrowness of the set of resources handled by the PEP (there can be multiple PEPs) the 

RAP call side of the PEP could be fairly simple. In fact, it is acceptable to combine the 

PEP and the RAP into a single execution unit (while keeping the functions separate) if 

the association of the PEP and RAP are one-to-one. Since the RAP is now be acting for 

potentially multiple resource access references in one or more applications, it will be 

more general than any one individual reference. If there are multiple resource 

―locations‖ serviced (local or remote, for example) then it may be best to keep the PEP 



D5.4 Full Prototype of the SPT Framework  

Page 26 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

simpler by passing the location to the RAP and having the RAP access the proper 

location. 

 

3.3.3. Design of the PEP/RAP 

The Client Application developer must create the PEP and the RAP to complete the 

resource access path (shown in orange in the figure). Now instead of the developer 

having to adapt to the constraints of a fixed Policy Enforcement Interface for all 

resource kinds, the developer is free to define the Policy Enforcement Interface when 

implementing the PEP. This can be tailored to be closer to the original access pattern. 

Further, it puts the entire mediated resource access path in the control of the developer. 

In security terms, the PEP and RAP are part of the NGAC Trusted Computing Base. 

Though an application developer may not ordinarily implement part of the trusted 

computing base, they are expected to implement the PEP and RAP if an appropriate 

PEP and RAP do not already exist. There are guidelines for the construction of the PEP 

and RAP to make the developer‘s task easier. The PEP and the RAP should both be 

small and logically simple executable programs, and may possibly exist within the same 

executable program. However, it is important that they can be granted privileges distinct 

to those of the client application. The RAP, which accesses the resource access 

interface, consists essentially of the code that previously appeared in the Application to 

access the resource, that was replaced by the call to the policy enforcement interface. 

The control flow of the PEP is basically a conditional statement that invokes the PDP 

access query function as the condition of the branch. The access call specifies the user, 

the object, and the operation to be performed on the object. Using the server‘s current 

policy, the PDP computes whether the user is permitted to perform the operation on the 

object and returns either ―grant‖ or ―deny‖. The ―grant‖ branch of the PEP branching 

statement invokes the RAP to perform the specified operation on the object, while the 

―deny‖ branch immediately returns a failure to the CA. 

 

The simplicity of the PEP and the RAP, and their isolation as separate and distinct 

execution units, are the essential foundation of the strategy of unbundling them from the 

core NGAC implementation. Since they are simple, they can be verified by inspection, 

and thus trustworthiness may be established. Since they are separate execution units, 

they have well-defined interfaces and cannot be corrupted by the CA or by other 

processes. Finally, as distinct execution units (processes) they can be given privileges 

distinct from those of the CA. Specifically, they can be configured to have exclusive 

access to the protected resources (or resource servers), so that there is no way for the 

CA or another process to bypass them and to directly access the protected resource. 

Table 2 uses informal pseudocode to illustrate the conceptual simplicity of the PEP and 

the RAP. Of course, since both may be implemented as RESTful services, there will be 

the necessary detail of marshalling arguments and invoking the PEP and the RAP and 

returning and interpreting results, but following this simple design pattern will help to 

assure by inspection that these are trustworthy components of the NGAC resource 

access path. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 27 

Confidentiality: Public Distribution 

Table 2: PEP and RAP pseudo-code 

PEP pseudo-code RAP pseudo-code 
pep( Op, Object, Data ) 

 

  determine User/Session from the environment 

  query_result = pdp:access(User, Op, Object) 

  if query_result == ‘grant’ then 

    ObjInfo = pdp:getobjectinfo(Object) 

    ra_result = rap(Op, Object, Data, ObjInfo) 

    return to Client App: ra_result 

  else 

    return to Client App: ‘Op on Object denied’ 

    

rap( Operation, Object, Data, ObjInfo ) 

 

  identify res_server using ObjInfo 

  result = res_server:Operation(Object, Data) 

  return to PEP: result 

 

In the PEP pseudo-code we first determine the identity of the User/Session associated 

with the call to the PEP by the CA. This may be done in a variety of ways depending on 

details of the local environment, available identity services, keyed mutually-

authenticated encrypted communication channels, etc. Then the access API of the PDP 

is invoked to obtain a decision whether the User/Session is permitted to perform the Op 

on the Object according to the currently active policy. If the PDP responds with ‗grant‘ 

then the PEP proceeds to get the metadata of the object, if necessary, including for 

example the location or resource server that holds the data, and then the PEP calls the 

RAP to perform the Op on the Object, optionally using the Data. The result is reported 

to the CA. If, on the other hand, the PDP query result was ‗deny‘ (or anything other 

than ‗grant‘) then the PEP does not perform the operation and it reports the access 

denial to the CA. The essence of what the PEP is trusted to do consists of these things: 

to consult the PDP, to not perform the requested operation if the PDP responds ‗deny‘, 

and to request the correct operation on the correct resource if the PDP response is 

‗grant‘. 

The RAP pseudo-code simply identifies the appropriate resource server using the 

ObjInfo argument. This step may be unnecessary if the PEP and RAP are specific to a 

resource server. The RAP then invokes the resource server to perform the Operation on 

the Object, optionally using the Data. The RAP returns the result of the Operation to the 

PEP. 

The PEP and RAP operate with identities that afford them exclusive access to the 

associated resource servers, so that they cannot be bypassed. In some cases it may be 

convenient to package the PEP and RAP together in the same process, or even to 

package the PEP, RAP and resource server together in the case that the protected 

resource itself is a web service or a database management system. Nonetheless, the 

security properties of resource access path are improved if the trusted PEP and RAP 

components are not packaged with a more complex, and therefore less trustworthy, web 

service or DBMS, but rather serve as a proxy for the more complex service. 

The unbundled PEP/RAP arrangement is convenient for the CA developer because the 

development of the CA, PEP, and RAP can be done independently of development and 

maintenance of the Policy Server. In fact, the server provides a feature that facilitates 

testing of the CA/PEP/RAP path. By executing the server with a special command line 

option, the server can be made to always return ―grant‖ or ―deny‖ to all access queries 



D5.4 Full Prototype of the SPT Framework  

Page 28 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

regardless of the loaded policy or even if there is no loaded policy. By testing with a 

local instance of the server with either of these options, even before the policy has been 

written in the policy language, it is possible to test both the access granted and access 

denied paths of the CA/PEP/RAP. Starting the server in ―grant mode‖ the resource 

access path should operate just like the original resource access pattern in which the 

Application had unrestricted use of the resource. ―Deny mode‖ can be used to test the 

CA/PEP‘s error handling execution paths. It is also possible to set the server to grant 

mode or deny mode by calling the setpol API with the argument ‗grant‘ or ‗deny‘. 

3.3.4. PEP Policy Enforcement Interface (peapi) 

A relatively simple interface, in the form of RESTful APIs, constitutes the Policy 

Enforcement Interface. 

peapi/getobject – return object content (read) 
Parameters 

 object = <object identifier> 

Returns 

 ―success‖ or ―failure‖ 

 <object data> 

peapi/putobject – set object content (write) 
Parameters 

 object = <object identifier> 

 content = <object data> 

Returns 

 ―success‖ or ―failure‖ 

 

3.3.5. RAP Resource Access Interface (raapi) 

Resource Access Points embody access methods that would likely be used directly in 

the client application if it were to access the resource without mediation by NGAC. The 

RAPs may be specific to a kind of object and may be very similar to a code fragment 

that would have been used in the application under such a scenario. Thus, the details of 

the Resource Access Interface may be chosen by the application developer, and 

encapsulated in a small distinct process. The PEP determines the appropriate RAP to 

call after asking the PDP for a policy verdict and getting the object‘s metadata from the 

PIP through a PQI call (getobjectinfo). 

3.3.6. PEP and RAP Implementation Templates 

Templates for implementation of the PEP and RAP that provide examples of invoking 

the Policy Decision Point (NGAC server) and Resource Access Points by Policy 

Enforcement Points are included in the distribution. 

The PEP template exhibits the definition of a server for a RESTful Policy Enforcement 

Interface providing the APIs: 

 peapi/getLastError – get the error code corresponding to the last error in the API 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 29 

Confidentiality: Public Distribution 

 peapi/getObject – get an entire object (including opening/closing) 

 peapi/putObject – put an entire object (including opening/closing) 

 peapi/openObject – open an object for incremental reading/writing 

 peapi/readObject – read from an open object 

 peapi/writeObject – write to an open object 

 peapi/closeObject – close an open object 

The RAP template is a example of a RAP for ordinary OS files, and currently 

implements file_open, file_close and file_read. 

The implementations of the PEP and RAP templates are contained in the following 

Prolog files: 

 pep.pl – defines an example PEP server for a policy enforcement interface 

 rap.pl – defines a simple example of a RAP for ordinary files 

3.4. ENFORCING THE NGAC FUNCTIONAL ARCHITECTURE 

The components of the NGAC functional architecture can only do their intended 

functions and the architecture achieve its intended benefits in a non-benign 

environment, if they can operate without malicious interference. That is, in a production 

environment that is exposed to real threats the functional architecture must be 

affirmatively enforced. NGAC is a reference validation mechanism (RVM) and since 

the NGAC components run with the existing system as their ―IT environment‖ it is 

necessary to embed the NGAC components within the environment in a way that 

achieves the essential properties of a reference validation mechanism
4
 (besides the 

obvious first property: correctness), that is, it must be tamper-proof and non-bypassable 

(―always invoked‖). These properties cannot be achieved by the RVM itself, but must 

be provided for the RVM by its environment through a proper architectural embedding 

and use of the native protection features of the environment. To accomplish this, 

particularly in the case of distributed systems with many kinds of protected resources, 

may not be a trivial matter. 

We note that some deployments of NGAC are done with the intention of demonstrating 

the utility or benefits of a common attribute-based access control system such as NGAC 

within a particular application domain. In the case of such benign environments, it is the 

proof-of-concept of the utility of a unified access control system that is the goal, not 

absolute and complete robustness of the deployment for the demonstration. As long as it 

is feasible, in principle, to achieve the enforcement of the functional architecture, we 

argue that it may not be justified to expend the resources to achieve that level of 

robustness in a deployment. We have found this to be the case of research projects in 
                                                           
4
 As per the ―Anderson Report‖ of 1972. 



D5.4 Full Prototype of the SPT Framework  

Page 30 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

which the goal is to demonstrate the utility of fine-grained access control in new 

contexts where it can address a resource protection challenge that is unique to, or 

exacerbated by, the application domain concerned. 

For the purpose of this discussion on the deployment of NGAC we assume the 

environment to be a general-purpose operating system or embedded operating system 

that provides basic protections, such as process integrity, process identity, file object 

integrity, and file access controls. For the sake of example we ssume a Unix-like 

operating system or one providing similar features to the basic protections mentioned 

above. 

First we outline the requirements: there must be isolation of the protected resources and 

a trusted chain of execution for components with the ability to access those isolated 

resources. 

Specifically, and at a minimum, the PEP, the RAP, or a combined PEP/RAP, and the 

PDP/PAP/PIP should run as distinct processes that should be run with a distinct user 

identity (we‘ll call it user ngac). 

The Policy Query Interface of the PDP and the Resource Access Interface of the RAP 

should be restricted to be callable only by PEPs. 

The resources to be controlled by NGAC should be made to be accessible exclusively to 

the ngac user or otherwise limited to access only by the RAP or PEP/RAP through the 

corresponding resource server. For example, for file objects in a Unix-like system all of 

the files placed under the jurisdiction of NGAC should be made to be read and write 

accessible only to the user ngac. Further, the executable file for the RAP or PEP/RAP 

should be configured to have the user id ngac, and have the set-user-id-on-execution 

attribute set. This will result in read and write access to the objects being given to the 

PEP, which is trusted to responsibly use this access only according to the responses of 

the PDP. Finally, the PEP and RAP executables should be configured to be executable 

only by the system shell or startup script to prevent an unauthorized subject from 

starting them and potentially gaining access to the protected resources while acting as a 

confused deputy. 

3.5. DEPLOYING THE NGAC COMPONENTS 

The ngac server does not need to be running in any one particular place, but it should be 

accessible to be used by all PEP/RAPs. Though it is not a strict rule, generally, running 

the PEP close to the client application and running the RAP close to the resource makes 

sense, unless the PEP and RAP are combined, in which case a decision must be made 

whether to deploy it closer to the client application or to the resource. If multiple CAs 

access the PEP from different locations and it does not make sense to deploy multiple 

instances of the PEP, then the combined PEP/RAP can be run close to the resource that 

it controls. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 31 

Confidentiality: Public Distribution 

3.6. INITIATING THE NGAC COMPONENTS 

To achieve the enforcement of the NGAC functional architecture discussed above, it is 

important to consider how the NGAC components are initiated, however they may be 

deployed. The particulars of the solution are very dependent on the organization of the 

NGAC-using subsystems and application, and on the characteristics and conventions of 

the IT environment in which NGAC is deployed. We outline the general principles for 

consideration by NGAC adopters. 

 

Figure 5: Initiation of the NGAC functional architecture components 

The general NGAC initiation scheme is depicted in Figure 5. The legend provides the 

meaning of abbreviations used in the figure. NGAC components are depicted with their 

customary acronyms.  

The privileged shell ―Psh‖ is a trusted program or script that is privileged to spawn user 

shells ―Ush‖ and to set the user id under which they operate. This shell is running, or is 

started by, the system initialization script. This shell starts the NGAC infrastructure, 

including initiating the policy server, the PEP and the RAP, as well as the environments 

that run the NGAC client applications. 

The Psh also has the responsibility to perform or delegate certain NGAC administration 

functions (by way of passing the Administrative Token), including the establishment of 

an NGAC session ID corresponding to the user ID for a particular instance of a Ush, 

and the administration (load, combine, set, etc.) of the policies to be used for the clients 

to be spawned by the Ush. Depending upon the organization and constraints provided 

by the Ush, the Psh may delegate all or part of these administrative responsibilities to 

the Ush by passing the AT to it. 



D5.4 Full Prototype of the SPT Framework  

Page 32 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

The user shell ―Ush‖ is a program or a script that initiates the client application. These 

is an instance of the Ush per user session. This may be a ―portal‖ kind of web 

application that runs different client applications in response to user interactions. It 

could also be an ―orchestrator‖ of client applications. As long as the Ush limits the 

ability of the user to invoke only a controlled collection of functions (client 

applications) and cannot be caused by the user to abuse its possession of the AT, then it 

is a candidate to have session and/or policy administration delegated to it. 

The client application ―CA‖ accesses an object ―Obj‖ provided by a resource server 

―RS‖ by making a request to the PDP to perform an operation ―Op‖ on Obj. To query a 

policy a user or session ID is needed. The PEP determines the user ID or the session ID 

according the manner in which it is invoked or the channel by which the CA query is 

made. If through an encrypted channel, then the mutual authentication performed to 

establish the channel will provide the ID. PEPs can also be poly-instantiated, that is, an 

instance of a PEP per Ush, per application (allowing the application is to be considered 

the ―user‖ from the standpoint of policy), per session, or per user. The PEP 

subsequently uses the user/session ID in requests made to the policy decision point 

―PDP‖. 

The PDP consults the current policy to return a ‗grant‘ or ‗deny‘ response, and, in the 

event that the object type indicates that the RAP is a web-service proxy using the 

NGAC protocol for web services, the PDP will also generate and return a one-time 

token ―OT‖. This token will be passed to the RAP by the PEP, which will in turn 

validate the OT with the PDP before passing control to the web service with the 

requested operation. In any event, the RAP performs the requested operation and returns 

the result to the PEP to be relayed to the CA. 

Figure 6 illustrates the sequence of actions among the NGAC components for an 

operation OP on an ordinary object o2 performed by a client application running as user 

u1. The Master Init in this chart represents the Psh in the previous figure. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 33 

Confidentiality: Public Distribution 

 

Figure 6: Sequence of actions for NGAC mediation of ordinary object operation 

3.7. WEB SERVICES AS PROTECTED RESOURCES 

As mentioned in the preceding section, web services may be the objects of an NGAC 

policy. There are two basic ways to approach this, but there are many possible 

variations. In the first case the Policy Enforcement Point for a web service is separate 

from the service and it may not know that the requested operation is a web service call 

until it is informed by the PDP and it passes the request to the proxy. In the second case 

the PEP/RAP is the public proxy and it calls the PDP itself. 



D5.4 Full Prototype of the SPT Framework  

Page 34 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

We illustrate the first case, which is supported by the OT scheme of the previous 

section. The Policy Enforcement Point discovers that the requested object operation is a 

web service after it makes the access query and then requests from the PDP the detailed 

information on the referenced object. In this case, the PDP can be configured to return a 

one-time token (OT) associated with the successful (‗grant‘) PDP response. This token 

is passed to the RAP that acts as a proxy for the Web service and the RAP will validate 

the token for the requested operation with the PDP, after which the PDP forgets the OT, 

and the proxy calls the real Web service to carry out the operation. Figure 7 shows the 

sequence of interactions for such a transaction; the client Invokes service A, the PEP 

creates the OT (represented here as nonce N) and returns it to the PEP, N is passed 

along with the request to the Proxy for A, which validates N with the PDP, if this 

succeeds then the Proxy invokes service A which returns the result to the PEP for relay 

to the Client. 

 

Figure 7: Sequence for NGAC-mediated Web service proxy 

  



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 35 

Confidentiality: Public Distribution 

4. INTEGRATION WITH PREDICTIVE ANALYTICS 

The Predictive Analytics Platform allows SAFIRE users to do advanced analytics in 

real time, storing huge amounts of data and using web visualization tools to easily query 

and visualize the stored data, as described in deliverable D2.4 Full Prototype of 

Predictive Analytics Platform. Moreover, the Predictive Analytics Platform offers 

different web services for interacting with different modules. An architectural overview 

of the described platform can be seen in Figure 8.   

 
Figure 8: Conceptual Predictive Analytics Platform architecture 

For each of the services offered by the Predictive Analytics Platform there are different 

components that may need to be secured. In the following we describe the standard 

industry security features associated with the services and components. For these 

services and security features we consider their attributes and how they apply to the 

SAFIRE security requirements. We indicate the areas where advantages are provided 

through integration with the Security, Privacy and Trust Framework developed in 

SAFIRE.  

4.1. STORAGE 

The relational storage is covered using PostgreSQL, a leading Open Source Relational 

Database System. The relational database performs several of the data quality checks 

listed in D2.5 Final Specification of Predictive Analytics Platform. The No-SQL storage 

is provided by using the Apache Cassandra Database, a key-value based database with 

horizontal scalability properties and with great integration with the Big Data landscape 

via different connectors. The following summarises the integration points for the 

SAFIRE SPT Framework and the Storage Layer of the Predictive Analytics Framework.  

4.1.1. Cassandra Distributed Database 

Cassandra database is used to store product factory data in a scalable way within 

SAFIRE, mainly storing time series data form different sensors. This Database is used 



D5.4 Full Prototype of the SPT Framework  

Page 36 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

in production in companies such as APPLE, Netflix and PayPal among others providing 

a lot of security features that are overviewed in the next sections.  

There are three main components to the security features provided by Cassandra: 

 TLS/SSL encryption for client and inter-node communication 

 Client authentication 

 Authorization 

By default, these features are disabled as Cassandra is configured to easily find and be 

found by other members of a cluster. In other words, an out-of-the-box Cassandra 

installation presents a large attack surface for a bad actor and therefore in a production 

environment those features should be configured accordingly. 

TLS/SSL Encryption 

Cassandra provides secure communication between a client machine and a database 

cluster and between nodes within a cluster. Enabling encryption ensures that data in 

flight is not compromised and is transferred securely. The options for client-to-node and 

node-to-node encryption are managed separately and may be configured independently. 

SSL Certificate Hot Reloading 

Beginning with Cassandra 4, Cassandra supports hot reloading of SSL Certificates. If 

SSL/TLS support is enabled in Cassandra, the node periodically polls the Trust and Key 

Stores specified in cassandra.yaml.  

Inter-node Encryption 

The settings for managing inter-node encryption are found in cassandra.yaml in 

the server_encryption_options section. To enable inter-node encryption, change 

the internode_encryption setting from its default value of none to one value 

from: rack, dc or all. 

Client to Node Encryption 

The settings for managing client to node encryption are found in cassandra.yaml in 

the client_encryption_options section.  

Roles 

Cassandra uses database roles, which may represent either a single user or a group of 

users, in both authentication and permissions management. Role management is an 

extension point in Cassandra and may be configured using the role_manager setting 

in cassandra.yaml. The default setting uses CassandraRoleManager, an implementation 

which stores role information in the tables of the system_auth keyspace. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 37 

Confidentiality: Public Distribution 

Authentication 

Authentication is pluggable in Cassandra and is configured using 

the authenticator setting in cassandra.yaml. Cassandra ships with two options 

included in the default distribution. 

By default, Cassandra is configured with AllowAllAuthenticator which performs no 

authentication checks and therefore requires no credentials. It is used to disable 

authentication completely. Note that authentication is a necessary condition of 

Cassandra‘s permissions subsystem, so if authentication is disabled, effectively so are 

permissions. 

The default distribution also includes PasswordAuthenticator, which stores encrypted 

credentials in a system table. This can be used to enable simple username/password 

authentication. 

Enabling Password Authentication 

Before enabling client authentication on the cluster, client applications are pre-

configured with their intended credentials. When a connection is initiated, the server 

will only ask for credentials once authentication is enabled, so setting up the client-side 

config in advance is safe. In contrast, as soon as a server has authentication enabled, any 

connection attempt without proper credentials will be rejected which may cause 

availability problems for client applications. Once clients are setup and ready for 

authentication to be enabled, the following procedure is followed to enable it on the 

cluster. 

Pick a single node in the cluster on which to perform the initial configuration. Ideally, 

no clients should connect to this node during the setup process, so you may want to 

remove it from client config, block it at the network level or possibly add a new 

temporary node to the cluster for this purpose. On that node, perform the steps 

elaborated in the Cassandra security document.
5
 

1. Open a cqlsh session and change the replication factor of the 

system_auth keyspace. By default, this keyspace uses 

SimpleReplicationStrategy and a replication_factor of 1. It is 

recommended to configure a replication factor of 3 to 5 per-DC. 

2. Edit cassandra.yaml to change the authenticator option to PasswordAuthen-
ticator. 

3. Restart the node. 

4. Open a new cqlsh session using the credentials of the default superuser. 

5. During login, the credentials for the default superuser are read with a consisten-

cy level of QUORUM, whereas those for all other users (including superusers) are 

read at LOCAL_ONE. In the interests of performance and availability, as well as se-

                                                           
5
 https://cassandra.apache.org/doc/latest/operating/security.html 



D5.4 Full Prototype of the SPT Framework  

Page 38 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

curity, operators should create another superuser and disable the default one. 

This step is optional, but highly recommended. While logged in as the default 

superuser, create another superuser role which can be used to bootstrap further 

configuration. 

6. Start a new cqlsh session, this time logging in as the new_superuser and disable 

the default superuser. 

7. Finally, set up the roles and credentials for your application users with CREATE 

ROLE statements. 

At the end of these steps, the one node is configured to use password authentication. To 

roll that out across the cluster, repeat steps 2 and 3 on each node in the cluster. Once all 

nodes have been restarted, authentication will be fully enabled throughout the cluster. 

Authorization 

Authorization is pluggable in Cassandra and is configured using the authorizer setting 

in cassandra.yaml. Cassandra ships with two options included in the default 

distribution. 

By default, Cassandra is configured with AllowAllAuthorizer which performs no 

checking and so effectively grants all permissions to all roles. This must be used 

if AllowAllAuthenticator is the configured authenticator. 

The default distribution also includes CassandraAuthorizer, which does implement full 

permissions management functionality and stores its data in Cassandra system tables. 

4.1.2. PostgreSQL Relational Database 

PostgreSQL database is used to store relational database along with data quality checks 

within SAFIRE.  

As in the case of Cassandra, there are three main components to the security features 

provided by PostgreSQL: 

 TLS/SSL encryption for client and inter-node communication 

 Client authentication 

 Authorization 

By default, these features are disabled in PostgreSQL and therefore in a production 

environment should be configured accordingly. 

TLS/SSL Encryption 

PostgreSQL provides secure communication between a client machine and a database 

cluster and between nodes within a cluster. Enabling encryption ensures that data in 

flight is not compromised and is transferred securely. 

https://cassandra.apache.org/doc/latest/cql/security.html#create-role-statement
https://cassandra.apache.org/doc/latest/cql/security.html#create-role-statement


 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 39 

Confidentiality: Public Distribution 

Roles 

PostgreSQL provides database roles, which may represent either a single user or a 

group of users, in both authentication and permissions management. PostgreSQL 

establishes the capacity for roles to assign privileges to database objects they own, 

enabling access and actions to those objects. Roles can grant membership to another 

role. Attributes provide customization options, for permitted client authentication. 

Authentication 

Authentication is pluggable in PostgreSQL. PostgreSQL by default provide different 

authentication mechanisms
6
 by default.  

4.1.3. NGAC Integration  

The NoSQL Casandra database supports custom authentication and authorization 

mechanisms and therefore small adapters are applied for integrating the NGAC server. 

In the case of the relational PostgreSQL database the integration point for NGAC is 

with the supported authentication mechanisms. An alternative approach that will be 

explored in preparation for commercial exploitation is to incorporate the NGAC 

extension into PostgreSQL as it is available in open source.  

4.2. WEB SERVICES 

4.2.1. Feature set 

The web services developed within SAFIRE Predictive Analytics module are mainly 

used to interact with the analytic models (e.g. getting predictions). The modules have 

been developed using an industry standard Framework called Spring Boot
7
.  

SpringBoot provides different modules for authentication and/or authorization purposes. 

The main Spring Boot component is Spring Security
8
, a library for getting authorization 

and authentication for web services using multiple providers and methods such as 

stateless and stateful mechanisms.  

4.2.2. NGAC Integration  

The integration point with NGAC is through the REST API capabilities that enable the 

Spring Security module to support the NGAC server for both authentication and 

authorization.  

4.3. VISUALIZATION 

In order to be able to visualize the results of the analytics two tools are provided within 

SAFIRE Predictive Analytics Platform for different kind of users: 

                                                           
6
 https://www.postgresql.org/docs/current/auth-methods.html 

7
 https://spring.io/projects/spring-boot 

8
 https://spring.io/projects/spring-security#overview 

https://www.postgresql.org/docs/current/auth-methods.html
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-security#overview


D5.4 Full Prototype of the SPT Framework  

Page 40 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

1. Business Intelligence: in order to provide support for Business intelligence 

dashboards Apache Superset tool is provided.  It provides an easy way to define 

different web-based dashboards with a lot of connectors to multiple databases. 

2. Data Scientist:  in order to provide support for data scientists that need to 

interact easily with the stored data in SAFIRE, to execute interactive advanced 

analysis over huge quantities of data, and to visualize those analyses in an easy 

way, Apache Zeppelin is provided within SAFIRE to fulfil this task. Zeppelin is 

a web-based notebook that easily provides support for interactive analytics over 

Big Data. 

4.3.1. Apache Superset 

Apache superset is a modern, enterprise-ready business intelligence web application that 

provides an intuitive interface to explore and visualize datasets. It has a wide array of 

beautiful visualizations that can be used to showcase data.  

Security in Superset is handled by Flask AppBuilder (FAB). FAB is a ―Simple and 

rapid application development framework, built on top of Flask.‖. FAB provides 

authentication, user management, permissions and roles. The security documentation 

can be seen at https://flask-appbuilder.readthedocs.io/en/latest/security.html. 

By default, Superset ships with a set of roles that are handled by Superset itself. You 

can assume that these roles will stay up-to-date as Superset evolves. Even though it‘s 

possible for Admin users to do so, it is not recommended that you alter these roles in 

any way by removing or adding permissions to them as these roles will be re-

synchronized to their original values as you run your next superset init command. 

Since it‘s not recommended to alter the roles described here, it‘s right to assume that 

your security strategy should be to compose user access based on these base roles and 

roles that you create.  

FAB provides authentication backends for standards like OAuth
9
 or OpenID

10
, however 

it can be easily extended for supporting custom approaches with of a little bit of code 

and configuration
11

. 

4.3.2. Apache Zeppelin  

Apache Zeppelin has different mechanisms to protect both the developed notebooks and 

to secure the communication between the servers and the clients. Apache Zeppelin uses 

Apache Shiro library
12

 to provide authentication and authorization mechanisms. Apache 

Shiro is a modular security library that can be easily extended and that have a lot of 

industrial security features included.   

                                                           
9
  https://oauth.net/2/ 

10
 https://openid.net/ 

11
 https://medium.com/@mmutiso/authenticate-apache-superset-with-a-custom-user-store-c4511ab0f798 

12
 https://shiro.apache.org/ 

https://flask-appbuilder.readthedocs.io/en/latest/security.html
https://oauth.net/2/
https://openid.net/
https://medium.com/@mmutiso/authenticate-apache-superset-with-a-custom-user-store-c4511ab0f798
https://shiro.apache.org/


 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 41 

Confidentiality: Public Distribution 

An overview of the authorization and authentication features provided out of the box 

can be seen on the following webpages.  

 https://shiro.apache.org/authentication-features.html 

 https://shiro.apache.org/authorization-features.html 

 

4.3.3. NGAC Integration  

Both Superset and Zeppelin visualization tools for the SAFIRE Predictive Analytics 

module support custom authentication and authorization mechanisms so the integration 

points with NGAC are small adapters that make it possible to use the NGAC server with 

the authentication and/or authorization features.  

4.4. UNIFIED PROCESSING ENGINE 

The Unified Processing Engine provides support for doing advanced analytics on both 

real-time and batch approaches. This module is based on Apache Spark. A Unified Big 

Data Framework. Moreover, as defining complex real-time analytics is difficult right 

now with this kind of framework a Complex Event Processing (CEP) engine has been 

included on the platform to cover this use case. The CEP engine used on SAFIRE is 

called Espertech. Espertech, provides to the developer a Domain Specific Language 

(DSL) language based on SQL that helps to define complex real time analytics patterns.  

Both engines are widely used and support industry standard network communication via 

SSL. The unified processing engine does not need to integrate with the NGAC server. 

However, the programs that run in the engine are required to pass the credentials to the 

storage engine queried in order to load or store the desired data.  

  

https://shiro.apache.org/authentication-features.html
https://shiro.apache.org/authorization-features.html


D5.4 Full Prototype of the SPT Framework  

Page 42 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

5. INTEGRATION WITH RECONFIGURATION AND OPTIMISATION 

Section 6.4.5 of D3.5 provides a description of the implementation of the SAFIRE 

security framework (SSF) in the Reconfiguration and Optimisation Engine (OE). The 

following discussion is reproduced from there. 

The Optimisation Engine (OE) container can be invoked only by the SAFIRE Situation 

Determination (SD) module, authorised earlier following the SSF. Similarly, the 

connection between OE and Objective Function (OF) uses TLS and, when it exists, the 

connection between OF and Predictive Analytics (PA) does as well. Notice that OE and 

OF containers are generated independently for each end user, thus there is no possibility 

of accessing other user data as long as end users do not reuse the same certificates or 

keys. 

OE is planned to use TLS certificates on both the server and the client side to provide a 

proof of identity. Consequently, it requires both the client and server to own a certificate 

signed by a specific Certificate Authority (CA), for example using OpenSSL. This way 

of securing the connection is widely available, supported by Docker and the majority of 

public cloud vendors. Similarly, Kubernetes supports TLS and even each Kubernetes 

cluster has its own root CA that can be used by the cluster components to validate the 

clients and servers' certificates. If deployed to a Kubernetes cluster, OE, OF and PA can 

request a certificate signing using the certificates.k8s.io API. Similarly, a root CA 

(named AWS Certificate Manager - ACM) is available when using Amazon Web Ser- 

vices (AWS). TLS is also supported by the Network Load Balancer, which can be used 

with both EC2 and Fargate Launch Style. TLS is also available in IBM Cloud, Azure, 

OpenStack and other public clouds so choosing this protocol does not limit the future 

deployment options. The independence of the execution containers and of the data they 

employ (subject to disciplined use of access keys, explained later in this section), along 

with the guarantee that the above-enumerated containers can be invoked only by a 

trusted invocation path, covers the architectural integrity aspect of security with the 

combination of communication integrity. 

The Next Generation Access Control (NGAC) methodology and configurable policy, as 

described in SAFIRE deliverable D5.5 [SAFIRE D5.5, 2018], are responsible for the 

above-mentioned discipline in the use of access keys. The components of the 

Reconfigurable and Optimisation engine, OE and OF, include the appropriate PEP 

(Policy Enforcement Point) subcomponent for communication with Policy Server (PS). 

The possibility of including PEPs into OE and OF has been raised thanks to The Open 

Group‘s modification of the NGAC functional architecture, which unbundled the PEPs 

and Resource Access Points (RAPs) from the NGAC perimeter. As it states in D5.5, the 

appropriate PEP subcomponents for OE and OF are developed by following simple 

templates that include calls to the Policy Server through the RESTful Policy Query 

Interface. The PEP subcomponents consist of a single decision based on calling the 

Policy Server and either returning an error condition to its caller if the Policy Decision 

Point (PDP), a module of PS, returned deny or completing the access operation if the 

PDP returned permit. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 43 

Confidentiality: Public Distribution 

The Policy Server API includes functions initsession and endsession which allow a 

session identifier to be registered as a proxy for a user identifier, where user denotes 

trusted components such as OE and OF. Then the access checks are made with the 

session identifier instead of a user identifier (i.e., its key). A particular SAFIRE 

component execution can be associated with a user id under a session id, which is a 

long string that is infeasible for an imposter to guess. The session id is passed to the OE 

(user according to the definition from D5.3) component to use when it makes requests 

to a policy enforcement point for OF (object according to the definition from D5.3) 

access. When the OE container instance is initiated by the SD component (as described 

earlier in this document), the initiator registers a session id to the policy administration 

API and passes that session id to the OE container. Only the initiator (SD), not the OE 

container, has the authorisation to call this API (enforced by its authorised TLS 

connection to the server). When the containers want to access their data, they make a 

request to a PEP for that data kind, supplying the session id in the request. The PEP, in 

turn, asks the PDP through the Policy Query Interface access request, using the session 

id instead of a user id, whether the access is permitted according to the policy and then 

enforces this decision accordingly. In this scheme, the PEPs own the data, that is, they 

are granted exclusive access to all the data so that they can enforce access according to 

the policy decisions of the PDP. The same scheme is followed when OE initiates the OF 

container. 

The whole communication scheme based on SSF is presented in Figure 9. In the figure, 

two session ids are generated: session_id is generated by the SD module using the SD's 

user key (sd_user_id) and session2_id is generated by OE using the OE's user key 

(oe_user_id). The access call to PS checks whether the user (either SD or OE) is 

permitted to execute the object (OE and OF, respectively). If the access is permitted, the 

component functionality is executed and the results are returned to the invoker. Then 

the session is ended. In the figure, the optional PA module is not present. Its presence 

would require establishing the third session based on the OF's user key (of_user_id) and 

then using it for invoking the functionality of PA. 



D5.4 Full Prototype of the SPT Framework  

Page 44 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

 

Figure 9: Communications among components in OAS use case 

  



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 45 

Confidentiality: Public Distribution 

6. INTEGRATION WITH SITUATION DETERMINATION 

As referenced from deliverable D4.5 Final Specification of Situational Awareness 

Services, ―The situational awareness services provide functionalities to handle for 

example configuration files, log-files. Furthermore, the situational awareness services 

provide abstract functionalities to access the Policy Server of the SAFIRE SPT 

framework. This abstract functionality can be extended by real implementations inside 

business case specific customisations. Thereby, all customisations built on top of the 

general situational awareness services are automatically NGAC aware.‖ 

Situation Determination (SD) is connecting to other modules using TLS. Thereby, SD is 

not acting as server, it is connecting to other modules as client. It requests data from 

Data-Ingestion, requests data from Predictive Analytics and, calls the OE. 

The components of the SD engine include the appropriate PEP (Policy Enforcement 

Point) subcomponent for communication with Policy Server (PS). The PEP 

subcomponents of the SD consist of a single decision based on calling the Policy Server 

and either returning an error condition to its caller if the Policy Decision Point (PDP), a 

module of PS, returned deny or completing the access operation if the PDP returned 

permit.  

A policy file written in the declarative policy specification language has been created 

for SD for each Business Case. It indicates the resources to be protected and distributes 

the access rights to external parties. This file is loaded into the ngac server once during 

the setup phase of the SAFIRE solution. An exemplary policy file for the OAS Business 

Case can be found in Table 3 

Table 3: OAS policy 

policy('OAS_Policy','OAS Enterprise', [ 

                      user('SD'), 

                    

                      object('Mixer 1'), 

                      object('Mixer 2'), 

                      object('Mixer 3'), 

                      object('Mixer 4'), 

                      object('Mixer 5'), 

                      object('Mixer 6'), 

  object('Mixer 7'), 

  object('Mixer 8'), 

  object('Mixer 9'), 

  object('Mixer 10'), 

       

  object_attribute('OAS Factory'), 

       

  assign('Mixer 1','OAS Factory'), 

                      assign('Mixer 2','OAS Factory'), 

                      assign('Mixer 3','OAS Factory'), 

                      assign('Mixer 4','OAS Factory'), 



D5.4 Full Prototype of the SPT Framework  

Page 46 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

                      assign('Mixer 5','OAS Factory'), 

                      assign('Mixer 6','OAS Factory'), 

  assign('Mixer 7','OAS Factory'), 

  assign('Mixer 8','OAS Factory'), 

  assign('Mixer 9','OAS Factory'), 

  assign('Mixer 10','OAS Factory'), 

       

                      policy_class('OAS Ecosystem'), 

                      connector('PM'), 

                      assign('OAS Ecosystem','PM'), 

  assign('OAS Factory','OAS Ecosystem'), 

 

                      associate('SD',[r],'OAS Factory')          

]). 

 

 

This file declares the resources to be protected, which are the 10 Mixers in OAS case. 

Each resource is being assigned to a parent element OAS Factory. The user of the 

resources will be the Situation Determination module, for which a user SD has been 

declared. The assignment of the read access right to the OAS Factory by SD has been 

declared in the statement associate('SD',[r],'OAS Factory'). For the other two Business 

Cases there exist corresponding policy files with an analogue structure. 

Within the Situation Determination module when resource access is being requested, a 

HTTP REST call to the ngac Policy Query Interface will be initiated. Find below an 

examplary http call requesting access to element OAS Factory by user element SD: 

http://localhost/pqapi/access?user=SD&ar=r&object=OAS Factory 

By this request, ngac will infer access to the 10 Mixers assigned to OAS Factory and 

return with grant. For authentication purposes, an a priori defined authentication token 

will be sent together with each access request to the ngac server. 

Figure 10 shows an overview of the data flow from the production machines to data 

ingestion / Nifi layer involving the security layer: 

 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 47 

Confidentiality: Public Distribution 

             
Figure 10 Data flow including security layer 

This results in the following enhanced workflow: 

o Data ingestion will continuously (i.e. an adjustable time interval, in OAS 

case in its current state 30 seconds) request data from the production 

machines using the Nifi interface 

o Before the data is being processed, read access is being requested from 

the security layer, resulting in the following conditional flow 

 If ngac returns grant, then the data is being further processed into 

the Kafka topics as depicted in the figure above and made 

available for Situation determination services 

 If ngac returns deny, then there is no further processing of the 

data possible 

 

On software side, this control mechanism is being realised within the Kafka Manager, 

which manages the processing of the data through the Kafka topics. 

 

  



D5.4 Full Prototype of the SPT Framework  

Page 48 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

7. INSTALLATION AND OPERATION 

7.1. INSTALLING AND RUNNING THE ‘NGAC’ POLICY TOOL 

The ngac policy tool is implemented in Prolog and requires the SWI Prolog 

environment to run. The ngac tool can be provided as a set of Prolog source files and/or 

as an ―executable‖ that has the Prolog runtime environment already bundled in. This 

executable is made by the shell script mkngac, located with the source files that must be 

run in an environment that has SWI Prolog installed. 

7.1.1. Install SWI-Prolog 

SWI Prolog is available for several operating environments, including Mac, Windows, 

and Linux. See http://www.swi-prolog.org.  

7.1.2. Install the ‘ngac’ source files and/or executable 

The current version of the ngac tool consists of a directory tree including source files 

and example files. The distribution is provided as a zip file of this directory tree. 

7.1.3. Initiate the ‘ngac’ policy tool 

If a ready-made executable ‗ngac‘ has been provided it may be executed directly from a 

command shell prompt. If you do this, skip down to ―Now you should see …‖ below. 

Otherwise, in the source directory ngac-server-2018-06 start SWI-Prolog from a 

command shell prompt using the name of the SWI-Prolog executable (usually ‗swipl‘, 

‗swi-pl‘, or something similar, depending on how it was installed). 

After printing a short banner SWI-Prolog will display its prompt ―?- ―. 

At the Prolog prompt enter ―[ngac].‖ (not the quotes) 

Prolog will compile the code and print ―true.‖ 

Execute the code by entering at the Prolog prompt ―ngac.‖ 

Now you should see the ‗ngac‘ prompt ―ngac> ‗ 

7.1.4. Test the installed ‘ngac’ tool 

The ngac tool has some self-tests built in. These should be run to ensure that everything 

is working correctly. Follow the instructions in the preceding section to run the ngac 

tool. Start it with the Prolog prompt command ―ngac(self_test).‖ This will run some 

built-in self tests when it starts. To not run the self-tests simply start the tool with the 

Prolog prompt command ―ngac.‖ 

The self tests can also be run by starting ‗ngac‘ normally and entering at the ‗ngac‘ 

prompt ―selftest.‖ 

http://www.swi-prolog.org/


 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 49 

Confidentiality: Public Distribution 

Procedures make up of ‗ngac‘ commands may be predefined in the procs.pl file. Look at 

the ones there and try them by entering the ngac command ―proc(ProcName).‖, where 

ProcName is the name of one of the procedures defined in procs.pl. 

7.1.5. Running the examples 

There are several examples included with the sources of the ngac Policy Tool. These 

include examples described in documents and PowerPoint slide decks used to introduce 

the NGAC concepts. 

There are predefined procedures (―procs‖) that run the examples. At the ngac> prompt a 

predefined procedure (e.g. named ―myproc‖) can be run with the command 

proc(myproc). It can be run with verbose output with the command 
proc(myproc,verbose). 

It is instructive to read the file procs.pl that defines the predefined procedures. The 

procedures consist of the same commands available at the command prompt. The user 

may define additional procedures in the procs.pl file for subsequent execution as above. 

7.2. INSTALLING AND RUNNING THE ‘NGAC-SERVER’ 

The ngac server is implemented in Prolog and requires the SWI-Prolog environment to 

run. The server can be provided as a set of Prolog source files and/or as an ―executable‖ 

that has the Prolog runtime environment already bundled in. This executable is made by 

the shell script mkngac, located with the source files that must be run in an environment 

that has SWI Prolog installed. 

7.2.1. Install SWI-Prolog 

SWI Prolog is available for several operating environments, including Mac, Windows, 

and Linux. See http://www.swi-prolog.org.  

7.2.2. Install the ‘ngac’ server source files and/or executable 

The current version of the ngac server consists of a directory tree including source files 

and example files. The distribution is provided as a zip file of this directory tree. 

7.2.3. Initiating the ‘ngac-server’ 

The ngac server may be started form the ‗ngac‘ policy tool or it may be started with a 

compiled executable. This is preferable since it allows the command line options to be 

used.  

If you do want to start the server from the policy tool follow the instructions above to 

get ‗ngac‘ running. After starting ‗ngac‘ it offers the prompt ―ngac>‖. There are a set of 

basic commands available in the normal mode (admin) and an extended set of 

commands for use by a developer in development mode (advanced). Entering the 

command ―help‖ will list the available commands in the current mode. If you want to 

load any policy files, do it now with the ‗ngac‘ command 

―import(policy(PolicyFileName)).‖, where PolicyFileName is the name of a .pl file 

relative to the execution directory. You can also combine policies with the ‗ngac‘ 

http://www.swi-prolog.org/


D5.4 Full Prototype of the SPT Framework  

Page 50 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

―compose‖ command. When you have the desired policies loaded and composed, start 

the server from the ‗ngac‘ tool using the command ―server(PortNumber).‖ or 

―server(PortNumber,Token).‖, where PortNumber is an unused TCP port and Token is a 

symbol that the server will require when policy administration APIs are called. The 

server will be started and will be listening to that port for calls to its RESTful API. A 

server started without the second argument will expect the default admin token (the 

string ―admin_token‖, without the quotes) in the policy administration API calls. 

7.2.4. Test the installed ‘ngac-server’ 

There are shell scripts of curl commands included with the source (servercurltest.sh and 

others) in the TEST subdirectory. These scripts can be run to send a sequence of 

requests to the server to test for known correct answers. 

 

 

 

  



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 51 

Confidentiality: Public Distribution 

8. NGAC CUSTOMISATION 

8.1. CUSTOMISATIONS AND EXTENSIONS TO NGAC FOR SAFIRE 

There are customisations and extensions to the NGAC standard and reference 

implementations represented in our implementation. In some cases these have been 

done in a previous version of our implementation, and in some cases there are 

extensions to the NGAC Standard that were done for the SAFIRE project. 

SAFIRE SPT Framework seeks to make advancements by enabling coherent system-

wide security policy and enforcement in IIoT systems. To enable this, the SAFIRE 

Security Framework should provide an expressive, dynamic, and comprehensible 

security policy description and enforcement vehicle. The base requirements are met by 

the policy modelling and enforcement framework expressed in the NGAC Functional 

Architecture and related standards.  

We intend to illustrate how the application of NGAC can provide a unifying approach 

to policy definition and access control in a dynamic FoF IIoT environment such as that 

which is the result of reconfiguration and optimisation as in SAFIRE. To do so we have 

made NGAC more usable, deployable in more diverse environments,, made it to be 

more easily extensible for new kinds of protected objects, and made it more supportive 

of large complex policies and policy composition than have been its past reference 

implementations. 

We have described our own version of the NGAC functional architecture with 

―unbundled‖ PEP and RAP as shown in Figure 1. We have decoupled the components 

by giving them RESTful APIs. This architecture enables a more extensible 

implementation of NGAC by easing the addition of new protected object kinds. Another 

feature of our version of the architecture is a lightweight Policy Server that places many 

fewer demands on the operating environment and thus is more portable. 

The extensions of our current implementation include: 

 Extensions to the declarative policy language including declarations to enable 

future static and dynamic checks of policies; 

 Support for policy composition; 

 Unbundled PEPs and RAPs for new object classes; 

 Constrained dynamic policy change – add and delete users, objects, user 

attributes, object attributes; add and delete assignments of users to user attributes 

and assignments of objects to object attributes; 

 Full Policy Query and Policy Administration APIs; 

 Addition of sessions to create a binding between a user identity and a successful 

user authentication that can be used instead of the user identity in an access 

query; 



D5.4 Full Prototype of the SPT Framework  

Page 52 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

 Policy graph rendering command; 

Declarative Policy Language 

We have previously developed a simple declarative policy specification. Our expressed 

intention was to implement additional features in the language, including: 

 Prohibitions, a construct to explicitly specify accesses that are to be denied (in 

addition to default deny), is a feature of the NGAC policy framework not 

previously implemented in our declarative language. Prohibitions have not yet 

been implemented as we have not found a need for them in the use cases that we 

have considered thus far. 

 Ability to define new object classes – Currently, object classes are arbitrary 

identifiers that are not checked. This has been done. 

 Ability to define specific operations that correspond to an object class – This 

will permit more precise type checking of object operations in policy rules. This 

has been done. 

 Explicit support for policy composition in the language – Previously, policy 

combination was a command in the ‗ngac‘ tool but not part of the language. The 

needed features are discussed more in the following section. Composition has 

been fully implemented in the policy server as well as in the policy tool. This 

has been provided as an alternative to the composition declaration in the 

language. 

The definition of the declarative policy specification language given in   APPENDIX A 

–  has been extended to include the new language features in these extensions. 

Policy Composition 

For large heterogeneous IIoT systems there needs to be a representation in the policy 

language for the composition of policies and support for various forms of composition. 

The previous implementation of the ‗ngac‘ policy tool did not fully support combined 

policies such as the example in the APPENDIX (Figure 13 and Figure 14). The 

implementation has now been extended to correctly handle such a simple examples. 

However, we anticipated a need to express policy composition within the language not 

just as a command outside of the language. We have extended the declarative language 

to include declarative policy composition and the implemented language processor 

accepts this extension. The processing to internally generate the declared composed 

policy has not been completed in the FP although much of the needed machinery is in 

place. However, the need has been met by full implementation of composition through 

the server policy administration API and in the policy tool command language. 

Unbundled PEPs and RAPs for new Object Classes 

Application developers need to be able to adapt to NGAC without waiting for further 

NGAC development before their needed resources can be available under NGAC 

authority. The developer already knows the resource and how it is to be accessed by the 

application. It should not be necessary to modify the core NGAC implementation for 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 53 

Confidentiality: Public Distribution 

every such example (as was the case with the NGAC reference implementation). 

Instead, the developer should be able to construct all of the components of the object 

access path and test the application without involvement of the NGAC server if 

necessary. The necessary components are small trusted components that consist 

primarily of code that probably exists already in some form with the application. The 

developer must extract relatively small bits of code from the application and place them 

into templates for Policy Enforcement Points (PEP) and Resource Access Points (RAP). 

The Policy Enforcement Interfaces and Resource Access Interfaces are thus under the 

control of the developer. 

We have developed examples and templates for PEPs and RAPs that application 

developers can use to more easily develop PEPs and RAPs, enabling them to add new 

kinds of protected resources. 

8.2. IMPORTING POLICIES TO THE SERVER 

A rich API has been added to the policy server for policy administration, including 

loading, unloading, and combining of policies; as well as runtime policy modifications. 

8.2.1. Modifying Policy at Runtime 

In addition to loading policies the server has been extended with add and delete APIs to 

modify loaded policies by adding or deleting individual policy elements and assignment 

relations. This is a limited form of dynamic policy modification that includes: 

 Add user 

 Add user attribute that is not part of an association (non-associated) 

 Add assignment of a new or existing user or user attribute 

 Add object 

 Add non-associated object attribute 

 Add assignment of new or existing object or object attribute 

 Delete user and assignment of user to user attribute(s) 

 Delete object and assignment of object to object attribute(s) 

 Delete empty non-associated user attributes or object attributes 

Note that this entails restrictions on additions and deletions. Attributes need to be empty 

to be deleted, and attributes that are part of an association cannot be deleted. Originally, 

there was no addition or deletion of associations but the implementation has now been 

extended to permit this. 

Policy change is achieved through a sequence of calls to the add and delete APIs of the 

Policy Administration Interface. Appropriate checks of the restrictions are made when 



D5.4 Full Prototype of the SPT Framework  

Page 54 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

these calls are made to keep the policy structure in a consistent state. Assignments must 

be deleted before the entities assigned can be deleted. Conversely, entities must be 

added before assignments can be made. 

8.2.2. Policy Composition 

The SAFIRE implementation of the policy server has corrected previous deficiencies in 

policy composition by modifying the internal data structures and algorithms. This 

version also includes a new distinct form of composition of ‗all‘ loaded policies. 

8.2.3. Persistence of the Server Policy Database 

Currently policies may be loaded into the server and the limited forms of changes noted 

above can be made. We considered implementation of persistence of the PIP but have 

not implemented persistence in the FP because of issues concerning the management of 

dynamic policies across multiple policy server execution sessions. We currently have a 

constrained form of policy change and it is not yet clear that starting from a previous 

(possibly uncertain) state, rather than a deterministically reproducible state, is better. By 

recording the sequence of changes to a known initial policy state (from a policy file) the 

state after changes can be reliably reproduced. We will reconsider persistence of the PIP 

if any of our use cases require it. 

8.3. NGAC DEVELOPER FEATURES AND CUSTOMISATION 

8.3.1. Customisation of the NGAC components 

The ‗ngac‘ policy tool presents a command line interface that offers a defined set of 

commands. The command interpreter also offers selective tracing of commands for 

development and debugging of the tool itself. The ‗ngac‘ command interpreter is easily 

extensible for new commands, and this ability has been frequently used during the 

implementation of the ‗ngac‘ software. The syntax and simple semantic checking of 

commands are achieved declaratively, and the addition of a new command is 

straightforward. There are two levels of commands: a restricted set for ordinary users 

(typically security administrators) and an expanded set that includes commands that are 

primarily of use to the tool developers. The expanded set includes (help is available in 

the tool for these): 

 inspect(item) (extensible in command.pl to display any internal values) 

 aoa(user) – show all object attributes for user in current policy 

 demo(demo_name) – run a prepared demo 

 los(policy) – show logical object system for specified policy 

 reinit – reinitialize policy storage 

 set(param,value) – display or set parameter value 

 traceoff – turn off tracing 

 traceon – turnon tracing 

 traceone – trace a single NGAC command 

 userlos(policy,user) – show the logical object system for user under policy 

 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 55 

Confidentiality: Public Distribution 

There are predefined command procedures (―procs‖) that exhibit some examples. At the 

ngac> prompt a predefined procedure (e.g. one may develop a command procedure 

named ―myproc‖) can be run with the command proc(myproc). It can be run with 

verbose output with the command proc(myproc,verbose). It can be run with a 

pause before each command (useful for demos) with the command 
proc(myproc,step). 

It is instructive to read the file procs.pl that defines examples of predefined procedures. 

The procedures each consists of a sequence of the commands available at the ngac> 

prompt. The user may define additional procedures in the procs.pl file for subsequent 

execution as above. 

‗ngac‘ commands can also be put into a file and executed as a script, without modifying 

the procs.pl file, using the script command, which like proc accepts the optional 

arguments verbose and step. 

The ‗ngac‘ tool has some self-tests built in. These may be run to ensure that everything 

is working correctly after installation, or after source code changes are made. The self-

tests can be run by starting ‗ngac‘ normally and entering at the ‗ngac>‘ prompt the 

command ―selftest.‖ 

The policy tool and policy server can be adapted in the following ways. 

 Commands can be added by modifying the command module to add a syntax, 

semantics (optional), help, and do clause for the new command. A 

syntax clause must be added for the command. This clause declares the 

command name and parameters, and what mode the command belongs to, admin 

or advanced. Admin commands are available in admin mode, but also accessible 

in the advanced mode but not vice versa. 

 The self-test framework is implemented in the test module. Tests for specific 

new modules can be added in the TEST subdirectory. An example of a test 

definition file for the spld module is implemented in TEST/spld_test.pl. 

 New predefined ‗ngac‘ command procedures can be added to the procs 

module. A proc clause is added for each new procedure to be defined. There 

are examples in the procs.pl file. 

 Global parameters for all the NGAC components are collected in one place and 

can be redefined. 

 New HTTP callable server functions can be added. 

8.3.2. Predefined command procedures 

There are predefined command procedures (―procs‖) that run some examples. At the 

ngac> prompt a predefined procedure (e.g. one may develop a command procedure 

named ―myproc‖) can be run with the command proc(myproc). It can be run with 



D5.4 Full Prototype of the SPT Framework  

Page 56 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

verbose output with the command proc(myproc,verbose). It can be run with a 

pause before each command (useful for demos) with the command 
proc(myproc,step). 

It is instructive to read the file procs.pl that defines the predefined procedures. The 

procedures each consists of a few of the commands available at the ngac> prompt. The 

user may define additional procedures in the procs.pl file for subsequent execution as 

above. 

‗ngac‘ commands can also be put into a file and executed as a script, without modifying 

the procs.pl file, using the script command, which like proc accepts the optional 

arguments verbose and step. 

8.3.3. Extension of the built-in tests 

The ‗ngac‘ tool has some self-tests built in. These may be run to ensure that everything 

is working correctly after installation, or after source code changes are made. The self-

tests can be run by starting ‗ngac‘ normally and entering at the ‗ngac>‘ prompt the 

command ―selftest.‖ 

The file TEST/spld_test.pl defines self test cases with expected results for the policy 

language processing and decision functions in the code file spld.pl. These tests use 

the test framework implemented by the file test.pl. Test for other modules may be 

created in a similar fashion, by creating a TEST/mod_test.pl file for a 

corresponding module mod.pl which must be modified to have an include directive 

for its test file. 

8.3.4. Global parameters 

Global parameters are set in the file param.pl. There are many values defined here 

that affect the operation of the NGAC components. Settable parameters (those that can 

be changed from the ‗ngac‘ command line with the set command or internally from 

Prolog code with the setparam predicate) are itemized in a list 

settable_params. Adding new settable parameters requires the new parameter 

name to be added to this list and to the dynamic directive above it in a fashion similar 

to the other entries. 

8.3.5. New policy server APIs 

Using the existing APIs as an example, additional APIs may be added to the policy 

server by modifying the file server.pl. 

 

  



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 57 

Confidentiality: Public Distribution 

9. SOFTWARE TOOLS 

The implementation of the ‗ngac‘ policy tool and the lightweight ‗ngac-server‘ are 

intended to be simple and portable, with minimal external dependencies. Motivation for 

its development and the specific objectives are described elsewhere. The NGAG 

reference implementations have been very heavyweight with many external 

dependencies on languages, libraries and tools. 

Our NGAC software is implemented in the Prolog language, which is well suited to 

representation and computation over access control policies in the NGAC framework. 

The Prolog implementation we use, SWI-Prolog, includes a visual editor and graphical 

tracer and a built-in make facility for rapid iterative development. 

The only tools necessary for this implementation are SWI-Prolog and the libraries 

included in its release; we are currently using version 7.6.4. The release includes a 

version of Emacs with a Prolog display profile, though an editor of the developer‘s 

choosing may be configured for invocation instead when editing Prolog source files. 

  



D5.4 Full Prototype of the SPT Framework  

Page 58 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

10.   CONCLUSIONS AND PLANS 

We have succeeded in implementing a version of the NGAC standard that computes the 

policy calculations for an arbitrary policy or combinations of policies. Existing 

examples of NGAC policies, and examples added to exhibit newly implemented 

features, are used as built-in self-tests and regression tests to confirm that the tool 

computes the known answers and that changes made during development do not cause 

the implementation to regress from previously achieved correct operation. 

Several extensions to the EP have been developed to create the FP. These include those 

capabilities needed to fulfil the contemplated application as a mechanism for endpoint 

access control in the present use cases. 

We intend to continue to develop and enhance our NGAC implementation to meet new 

requirements that we encounter as we pursue our exploitation plans. 

As has been demonstrated in our mapping of the IISF functional building blocks to the 

NGAC approach, there are numerous future potential options for using NGAC in 

multiple functional roles within deployments of a SAFIRE-enabled FoF system. When 

an NGAC-based approach seems that it would be beneficial, adding features to the 

present implementation and already planned extensions will be undertaken to further 

expand the capabilities and applicability of the implementation. 

  



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 59 

Confidentiality: Public Distribution 

11.   REFERENCES 

[FGJ15]  David Ferraiolo, Serban Gavrila, and Wayne Jansen. Policy Machine: Features, Ar- chitecture, and 

Specification. National Institute of Standards and Technology, October 2015. NIST Internal Report 

7987 Revision 1.  

[G
+

] Gavrila et al. Policy machine source. https://github.com/PM-Master.  

 

[Gav07]  Serban I. Gavrila. The Policy Machine: User Guide, January 2007.  

 

[Int15] InterNational Committee for Information Technology Standards, Cyber security technical committee 

1. Information technology—Next Generation Access Control—Generic Operations & Abstract Data 

Structures, May 2015. INCITS Project CS1/2195-D, NGAC-GOADS, Revision 1.60 in review, to ap-

pear. 

 

[Int16a] InterNational Committee for Information Technology Standards, Cyber security technical committee 

1. Information technology—Next Generation Access Control—Functional Architecture, February 

2016. INCITS Project CS1/2194-D, NGAC-FA, Revision 0.70 in review, to appear. 

 

[Int16b] InterNational Committee for Information Technology Standards, Cyber security technical committee 

1. Information technology—Next Generation Access Control— Implementation Requirements, Pro-

tocols and API Definitions, February 2016. INCITS Project CS1/2193-D, NGAC-IRPAD, Revision 

0.20 in review, to appear.  

 

[Int13] InterNational Committee for Information Technology Standards, Cyber security technical committee 

1. Information technology—Next Generation Access Control—Functional Architecture, 499-2013. 

INCITS Project CS1/2194-D, NGAC-FA, March 2013. 

 

[Int18] InterNational Committee for Information Technology Standards, Cyber security technical committee 

1. Information technology—Next Generation Access Control—Functional Architecture, 499-2018. 

INCITS Project CS1/2194-D, NGAC-FA, Supersedes INCITS 499-2013, January 2018. 

 

[SAF D5.2] SAFIRE Project, D5.2 Early Specification of Security, Privacy and Trust Framework, Version 1.0, 

March 2018. 

 

[SAF D5.5] SAFIRE Project, D5.5 Final Specification of Security, Privacy and Trust Framework, Version 1.1, 14 

November 2018. 

 

 

  



D5.4 Full Prototype of the SPT Framework  

Page 60 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

12.   APPENDIX A – NEXT GENERATION ACCESS CONTROL 

12.1. NGAC OVERVIEW 

The access control policy specification representations to be described are based on the 

framework provided by the Next Generation Access Control (NGAC) standard:  

 Next Generation Access Control Functional Architecture (NGAC-FA) [Int16a] 

 Next Generation Access Control Generic Operations and Data Structures 

(NGAC-GOADS) [Int15], and 

 Next Generation Access Control Implementation Requirements, Protocols and 

API Definitions (NGAC-IRPAD) [Int16b]. 

Where the standards leave off the ―Policy Machine‖ reference implementation is 

consulted for details.  

We begin with a description of the access control framework. Following this, we 

describe the representations found in the standards or in the reference implementation, 

including a graphical representation, the low-level textual representation, and the low-

level imperative command representation are distilled from the standards and the 

reference implementation. The low-level imperative command representation of policy 

is that of the reference implementation described in [Gav07]. It is capable of dynamic 

policy changes that can be done under the control of scripts triggered by events. 

Also presented are some alternative policy representations that we have developed, 

including an alternative to the low-level imperative command representation and a 

novel declarative representation used by our ‗ngac‘ policy tool. The declarative 

representation is cleaner and more intuitive. We have not yet investigated its extension 

for dynamic policies though our tool does have scripting capabilities that may be 

extended and adapted for the purpose. 

Examples and figures following are taken from the NGAC standard document and from 

documents describing the Policy Machine [FGJ15, Gav07] reference implementation 

[G
+
] of the NGAC standard. The examples are recast in the alternative declarative 

representation. 

 

12.2. NGAC ROLE IN SAFIRE ARCHITECTURE 

The IISF highlights the foundational role of security model and policy in its functional 

viewpoint. Critical aspects of this role are those addressed by NGAC. 

NGAC is a novel approach to access control that affords unprecedented flexibility and 

the ability to represent and enforce arbitrary attribute-based access control policies 

within a unified framework. NGAC has not to our knowledge been applied previously 

in industrial manufacturing or any Industrial Internet of Things (IIoT) environment. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 61 

Confidentiality: Public Distribution 

NGAC extensions will also be needed to address SAFIRE real-time data requirements 

for security policy enforcement. 

The features and particulars of the NGAC reference implementation, and the published 

examples, suggest that it has thus far been applied to enterprise IT. However, the 

scalability and flexibility of NGAC make it a potent tool for addressing the scale, 

complexities, and security challenges of combined IT and OT as found in IIoT systems. 

NGAC provides a framework and mechanisms that have the potential to unify the 

system-wide access control policies, and provide the ability to understand the net effect 

of the composed policies of the underlying mechanisms. 

There are several extant reference implementations (RI) of NGAC, mostly under the 

name ―Policy Machine‖ (PM), that have been developed in recent years by the principal 

authors of the NGAC standards. It has not been an apparent goal of these efforts to 

provide an industrially deployable implementation that supports heterogeneous 

environments, or that is readily extensible to new kinds of protected objects. Rather, the 

re have all been proofs-of-concept, all the more so with the latest versions. Nonetheless, 

with versions subsequent to the initial PM, the developers seem to have taken into 

consideration some of our comments and requests made over the past two to three years, 

with improvements such as independence from Microsoft Windows Server, 

independence from Windows Active Directory, and independence from LDAP. They 

have moved to store the policy information first in MySQL and then, as an option, in 

Neo4j
13

, which is better suited to policies in the NGAC framework. As more recent 

prototypes have emerged, they seem to have focused on narrower aspects of NGAC 

functionality, rather than a complete system, such as improved algorithms, a Web-

service-based NGAC server, RESTful APIs, and deployment in Docker containers, 

though, as far as we understand, not all backward-compatible with their more complete 

early PM versions. We continue to monitor the releases of their experiments, as it is 

clear that many of their recent developments are relevant to our concerns. 

NGAC is described in the source documents [FGJ15], [Int15], [Int16a], [Int16b] and 

[Int18]. Several versions of reference implementations of NGAC are described in [G
+
] 

and [Gav07]. 

The Open Group has implemented our own NGAC-related tools and a simple 

declarative language to express policies that comply with the NGAC framework. 

Specifically, a desktop command-line tool called ‗ngac‘ that loads policies expressed in 

the declarative language and can answer queries such as ―access(policy1,(u1,r,o2))‖, the 

meaning of which is: ―under policy ‗policy1‘, is user ‗u1‘ allowed to read object ‗o2‘?‖. 

The declarative language is easily read from a graphical representation of the policy, 

and is more intuitive than the imperative language of the PM RI. The ‗ngac‘ policy tool 

can generate a translation of the declarative policy in the imperative language for import 

into the earlier PM servers. The present declarative language does not support the entire 

NGAC policy framework, currently lacking prohibitions and obligations. The present 
                                                           
13

 Neo4j is a graph database that is available in community and commercial versions. 



D5.4 Full Prototype of the SPT Framework  

Page 62 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

specification of the declarative language is given in the text of this document. We 

anticipate making future extensions to this implementation. 

12.3. NGAC MOTIVATION 

According to the NGAC-FA Standard [Int16a]: 

Next Generation Access Control (NGAC) is reinvention of traditional access 

control into a form that suits the needs of modern, distributed, 

interconnected enterprise. The NGAC framework is designed to be scalable, 

to support a wide range of access control policies, to enforce different types 

of policies simultaneously, to provide access control services for different 

types of resources, and remain manageable in the face of change. 

12.4. NGAC POLICY FRAMEWORK 

The core constructs of the access control framework are:  

 A set of basic elements – representing entities 

 A set of containers of different types – to represent characteristics of basic 

elements 

 A set of relations – to represent relationships among basic elements and 

containers  

There is also a set of commands for the creation, deletion and maintenance of basic 

elements, containers and relations.  

The basic elements comprise:  

 Users – unique entities that are either humans, trusted programs, or devices    

 Processes – system entities that have a reliable user identity and operate in a 

distinct memory    

 Objects – resources to which access is controlled, e.g. files, messages, database 

records, etc.    

 Operations – denote actions performed on elements of policy (either external 

protected resources or internal resources)    

 access rights – enable actions to be performed on elements of policy (either 

external protected resources or internal resources) 

 

Containers comprise:    

 User attributes – defines membership on the basis of an abstract user capability 

or property. The members of a user attribute may be users or other user 

attributes. Membership is transitive.    

 Object attributes – defines membership on the basis of an abstract object 

characteristic or property. Members of an object attribute may be objects or 

other object attributes. Membership is transitive.    

 Policy classes – defines membership related to an access control policy, such as 

RBAC, MLS. Members of a policy class may be users, user attributes, object, or 

object attributes. Multiple policy classes may exist simultaneously. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 63 

Confidentiality: Public Distribution 

Every user attribute, object attribute, and policy class has a unique identifier. Policies 

are expressed as configurations of relations of the following four types:  

 Assignment – defines membership within containers, involves a pair of policy 

elements    

 Association – defines authorized modes of access, it is a 3-tuple 

< userattribute, accessrightset, attribute >    

 Prohibition – specifies a privilege exception, it is a 4-tuple (of 3 different kinds 

described below)    

 Obligation – dynamically alters access state, triggered by an event; it is a 3-tuple 

< user, eventpattern, eventresponse >  

The prohibition relation has three forms:  

 <user, accessrightset, inclusiveattributeset, exclusiveattributeset> 

 <userattribute, accessrightset, inclusiveattributeset, exclusiveattributeset> 

 <process, accessrightset, inclusiveattributeset, exclusiveattributeset>  

Events that trigger obligations may include the following information:    

 Operation;    

 User ID;    

 Process ID;    

 One of the user attributes of the process performing the operation;    

 Policy element ids representing a resource or policy information; or    

 One or more attributes of the resource or policy information on which the 

operation has been performed.  

From the four configured relation types above, four types of derived relations can be 

computed   for the purpose of making access control decisions:  

 Access control entry – derived from association; < user, accessright >    

 Capability – derived from association; < accessright, policyelement >    

 Privilege – derived from association; < user, accessright, policyelement >    

 Restriction – derived from conjunctive and disjunctive prohibition relations of 

the same form; restricts process from performing an operation against a policy 

element, based on process attributes.    

 

  



D5.4 Full Prototype of the SPT Framework  

Page 64 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

13.   APPENDIX B – NGAC-BASED SECURITY POLICY REPRESENTATIONS 

There are several representations of policies based on the NGAC policy framework. 

13.1. DECLARATIVE POLICY LANGUAGE REPRESENTATION 

The Declarative Policy Language (DPL) is the sole vehicle for expressing NGAC 

policies in a form usable to the TOG-NGAC implementation. The syntax and semantics 

of the DPL are described in Section 2.1 of this document and the underlying policy 

framework in Section 12.4 of Appendix A. 

13.2. GRAPH REPRESENTATION 

Policies expressed in this framework are best considered as mathematical graphs. This 

is a very natural way to represent and to develop a policy. The examples presented here 

are represented as directed graphs in a particular layout that is conducive to interpreting 

the policy. Such graphs may be sketched manually or with a drawing utility as are the 

following examples. A policy_graph command has been added to the ‗ngac‘ policy 

tool to create a graphical rendering of a loaded policy, as shown examples at the end of 

this section. 

Figure 11 illustrates two examples of assignment and association relations as graphs. 

Figure 11(a) is an access control policy configuration with policy class ―Project 

Access‖, and Figure 11(b) is a data service configuration with ―File Management‖ as its 

policy class. On the left side of each graph are users and user attributes, and on the right 

side are objects and object attributes. Arrows represent assignment relations and dashed 

lines represent associations. An association may also be thought of as a pair of 

assignments, the first an assignment of a user attribute to an operation set, and the 

second an assignment of the operation set to an object attribute. In the association 

Division–{r}–Projects, the policy elements referenced by Projects are objects o1 and 

o2, meaning that users u1 and u2 can read objects o1 and o2. 

 

Figure 11: Assignment/Association Graphs 

Figure 12 illustrates the independent derived privileges of the separate graphs in Figure 

11. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 65 

Confidentiality: Public Distribution 

 

Figure 12: Independent derived privileges from Figure 11(a) and (b) 

The policy specification technique allows for complex policies to be built up from 

separate policies or policy fragments. For example the two policies of Figure 11 when 

combined yield the policy graph illustrated in Figure 13. The derived privileges of the 

combined graph is shown in Figure 14. 

 

Figure 13: Combined policy graphs of Figure 11 

 

Figure 14: Derived privileges of the combined graphs of Figure 11 

Figure 15 and Figure 16 respectively show the output generated by the ‗ngac‘ tool‘s 

policy_graph command for the policies (a) and (b) introduced in Figure 11. 



D5.4 Full Prototype of the SPT Framework  

Page 66 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

 

Figure 15: 'ngac' policy_graph rendering of policy (a) 

 

 

Figure 16: 'ngac' policy_graph rendering of policy (b) 

13.3. LOW-LEVEL REPRESENTATIONS 

Earlier PM reference implementations used two low-level representations, a low-level 

textual representation of the policy machine graph, and a low-level imperative 

command representation that represents primitive actions that the PM Server can 

perform to build and manipulate elements of its internal policy model. The Admin Tool 

in the PM reference implementation directly manipulates the system-wide model 

maintained in the PM Server by passing it commands in the imperative language. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 67 

Confidentiality: Public Distribution 

Live update of the system-wide model can easily disrupt normal operations, and is not a 

viable practice for policy development and testing. We implemented the original 

standalone policy tool called ‗ngac‘ for this purpose. The low-level imperative 

representation could be generated by our ‗ngac‘ policy tool, creating files that could be 

imported by the PM Server. These capabilities are no longer relevant since our ‗ngac-

server‘ implementation has the ability to load policies represented in our Declarative 

Policy Language and has a Policy Administration Interface that enables policy 

manipulation in the server. 

  



D5.4 Full Prototype of the SPT Framework  

Page 68 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

14.   APPENDIX C – NGAC POLICY DEVELOPMENT 

We discuss the process of developing policies to use with the NGAC Policy Server and 

present the ONA policy as an example. The reader should be familiar with the NGAC 

policy framework described in Section 12.4 Appendix A and the policy representations 

described in Section 2.1 and Section 13 Appendix B. 

14.1. METHODOLOGY FOR DEFINITION OF POLICY ELEMENTS 

We begin with an overview of the methodology for developing an NGAC policy. 

1) Identify the distinct objects and object types to be protected (protected 

resources). 

2) Identify the controlled operations on each object or object type. 

3) Identify the distinct users and groups of users that are linked to identities that are 

reliably available at run time. 

4) Identify, for all the users and objects, a collection of attributes that can be used 

to characterize users or objects. These should be binary attributes, that is, each 

is an attribute that a user or object either has or does not have. Attributes can be 

thought of as a set to which a user or object may belong. 

5) Make assignments of each user to appropriate user attributes, each user attribute 

to other user attributes, objects to object attributes, and object attributes to other 

object attributes. 

6) Connect the resulting graph by having the user side and the object side both 

belong to the same policy class, and by having the policy class belong to the 

connector ‗PM‘. Multiple policy classes, and their descendant attributes, may 

belong to the connector. 

Some of the items introduced above are now described further. 

14.1.1. Attributes 

Often it is convenient to create attributes that make sense for the domain whether or not 

they correspond to actual runtime entities. The organization for which the policy is 

being developed should identify user attributes and object attributes independently of 

particular policy details. The set of basic attributes for the organization should apply to 

most policies. Additional attributes may be needed to provide distinctions that are 

needed for particular policies, but the set of basic attributes would still be valid. 

Things that should be considered with defining the attributes appropriate for the policies 

of an organization would include: 

 Job titles 

 Hierarchical management structure and roles 

 Functional roles 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 69 

Confidentiality: Public Distribution 

 Non-employee roles 

 Customer roles 

 Departmental and project structures 

 Physical facility divisions 

 Organization of authority over (―ownership of‖) resources 

 Logical or physical organization of resources 

 Kinds of resources/data 

 etc. 

 

Attributes pertaining to users and groupings of users should reflect the logical structure 

of relationships; the same for objects and groupings of objects. 

 

For example, let us create a policy to convey the simple idea of privileged access to 

certain objects. Suppose we have a set of users some of whom, administrative users, 

have access to objects that other users do not. Any user can be designated as an 

ordinary_user or as an administrative_user, and data objects designated as an 

unrestricted_object or arestricted_object. The user attributes are all_users, 

ordinary_user, and administrative_user; the object attributes are all_objects, 

restricted_object, and unrestricted object. In Figure 17 we see a policy graph containing 

this core set of attributes and their relations (blue arrows). We can then assign 

individual users and objects to these categories (red arrows). Finally we can represent 

the intended access associations among user attributes and object attributes (green 

arrows). 

 

 
Figure 17: 'Privileged-Access' policy graph 

The declarative specification of the policy is shown in Figure 18 with the rules of the 

specification coded in the same colors as the corresponding elements of the graph. This 

specification embodies the policy that administrative users are allowed to read and write 



D5.4 Full Prototype of the SPT Framework  

Page 70 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

all objects (both restricted and unrestricted), while ordinary users may only read 

unrestricted objects. It can easily be seen that changes to the organizational policy, such 

as permitting ordinary users to both write and read unrestricted objects, does not require 

any change to the defined attributes or their logical structure. Only the association 

between the ordinary_user attribute and the unrestricted_object attribute must have an 

added access right for write. If the organizational policy was amended to permit 

ordinary users to read, but not to write, restricted objects, then again the attributes 

would not change but a new association would be made between the ordinary_user 

attribute and the restricted_object attribute with the read access right only. 

 

Figure 18: Declarative specification of the 'Privileged-Access' policy 

14.1.2. Web services as policy objects 

For web services as objects the methodology above may be modified slightly. One still 

identifies the distinct objects (or resources) and the operations permitted on them. Often 

there are multiple possible operations on the same object. These operations will be 

performed by a Web service, either a URI per object type, a URI per object, or a URI 

per operation per object, as determined by the definition of the service associated with 

each URI and its arguments. 

How the services are defined all depends on how one wants to organize the concepts in 

the policy and whether every API (URI) is to be thought of as an independent resource 

(even if it operates on the same underlying object) or think of potentially multiple APIs 

providing different operations on the same underlying object. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 71 

Confidentiality: Public Distribution 

 

 

The Policy Enforcement Point for a web service may be defined a proxy for the service 

that calls the PDP. It is essential that a user of the service can only access the service 

through the PEP proxy. 

 

As an example, suppose the contents of a file A are to be provided as a web service. 

There are multiple ways to package this service. One way is to provide separate read 

and write operations within the file A object‘s service: 

 

fileAservice read 

fileAservice write 

which could be made the Web APIs 

 

fileAserviceRead 

fileAserviceWrite 

This would be reflected in the policy as: 

 

policy( myFileServicePolicy, ‗FSP‘  [ 

user(u1), 

object(fileA), 

object_attribute(served_file), 

assign(fileA, served_file), 

associate(ordinary_user,[read],served_file), 

…]). 

policy queries would look like access <u1,read,fileA>, where the operations are read 

and write and the service is file access. 

Alternatively: 

policy(  myFileOpServicePolicy, ‗FOSP‘, [ 

object(fileAread), 

object(fileAwrite), 

assign(fileAread, unrestricted_API), 

assign(fileAwrite, restricted_API), 

associate(ordinary_user, [call], unrestricted_API), 

associate(administrative_user, [call], all_APIs), 

…]). 

Queries against this policy would look like access <u1, call, fileAread>, where the 

operation requested is call and the service provided is read from file A. 



D5.4 Full Prototype of the SPT Framework  

Page 72 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

 

 
 

14.2. EXAMPLE – DEVELOPMENT OF AN NGAC POLICY FOR ONA 

This section presents an example of applying the methodology to the development of an 

NGAC policy for an ONA use case. First, working with the ONA partner we gathered 

information about the security environment, and identified security objectives and 

parameters of the ONA environment. 

14.2.1. The ONA security environment 

ONA identified its overall security objectives: 

1) To identify and authenticate users 

2) Protection and the confidentiality of the information. 

3) Users account Management integrated in third party platforms. 

4) The right information [access] for every user according to his profile or role. 

5) Capability for registering Security related activity issues (access control, 

backup/restore operations, configuration changes, forensic auditing, … 

6) System integrity. To prevent unauthorized manipulations of the system 

(software execution, software install, communication, update/upgrade 

management, …). 

ONA identified its legitimate actors/users of Data Assets: 

1) ONA (OEM). The machine manufacturer. 

2) ONA‘s customer, usually the machine owner and the company operating the 

machine. In the future this scenario could be more complex: machine renting, 

owner that doesn‘t operate the machine, … 

3) Third party companies giving services based on machine data: technical service 

providers (maintenance, calibration, equipment certification, …), components 

and spare part providers, financial companies (insurance, exporting/trading, …), 

… even the government/public sector (energy [provider …]) 

ONA identified the Data Assets needing protection, threats to the assets, and 

organizational policies of protection for each actor/user. 

For OEM (ONA) itself and its customers, the Assets: 

 Manufacturing data (programs, scripts, reference points, set-up data, technology 

files, etc.) 

 Machine manufacturing data (calibration, axis compensation, etc.) 

 Software systems (CNC/PLC software, firmware, etc.) (Technically a machine 

CNC software update/upgrade can be a re-configuration process in SAFIRE, so 

this software can be seen as a ―data asset‖. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 73 

Confidentiality: Public Distribution 

ONA identified the threats to these assets: 

 Unauthorized manipulation can generate equipment malfunction affecting the 

OEM trade image and reputation, 

 Unsatisfied customers 

 Legal issues if applied (turn key project with defined technical targets and 

compromises, etc.) 

The policy of protection for these Assets: 

 Only OEM authorized actors: application/service engineers, R&D staff, dealers, 

etc. 

 Actors permitted / not permitted to act on an Asset, permissions may be different 

per actor 

For OEM‘s customers and Third party companies, the Assets: 

 Machine usage data 

 Customer behaviour data 

 Other types of aggregated data 

The threats to these assets: 

 Confidential data (people of companies) 

 Intellectual property rights associated to manufacturing processes, etc. 

 Other types of rights that must be preserved because of legal regulations 

The policy of protection for these assets: 

 Only authorized actors can access the data asset. 

 OEM and/or any other company providing cloud SAFIRE services can be 

excluded from the authorized actors list depending on legal contracts 

 This is a key topic under research. Similar problem with the assignment of 

aggregated data. 

Finally, Assumptions that may be made about the environment: 

 Protections are provided against Physical manipulations of machines (covers, 

cabling, devices, etc.) 

 Protection of data environment in private spaces (factory, workshop, etc.) 

 Personnel data (face images, fingerprint, etc.) (in custody of dedicated systems?) 

14.2.2. ONA security problem 

From the information gathered about the security environment we present a succinct 

statement of the security problem:  

Assets to be protected include: 



D5.4 Full Prototype of the SPT Framework  

Page 74 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

 Manufacturing data 

 Machine configuration data 

 Machine usage data 

 Customer behaviour data 

Threats to the Assets (reiterated more succinctly): 

 Unauthorized modification leading to equipment malfunction 

 Exposure of confidential data 

 Compromise of IPR 

 Violation of rights guaranteed by Regulations 

Policies to be followed: 

 Only authorized access – default is no access 

 SAFIRE services in Cloud are subject to access controls 

Assumptions on the Environment: 

 Adequate physical protection is in place – tampering is covered 

 Physical spaces where data processing systems and manufacturing machines 

reside are secured – untrustworthy personnel is covered 

 Personnel data are protected – by segregation from other data on separate 

systems, and thus are covered 

14.2.3. ONA policy formalization 

We now define the elements of an NGAC policy that will cover aspects of the security 

problem that are suitable for an NGAC solution. Without identifying specific users or 

data objects we can identify attributes of both that are meaningful to the organization 

and are likely to provide a framework for expressing access control policy. 

NGAC user attributes: 

 ‗ONA‘ – the company 

 ‗ONA Staff‘ – staff of the company 

 ‗ONA Mgt‘ – company management staff 

 ‗ONA FEng‘ – company field engineering staff 

 ‗Cust‘ – staff of all ONA customers 

 ‗Cust A‘ – staff of a particular ONA customer A 

 ‗Cust B‘ – staff of another ONA customer B 

 ‗3
rd

 Party‘ – staff of all third party companies 

 ‗3
rd

 Party C‘ – staff of a third party company C 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 75 

Confidentiality: Public Distribution 

The user attributes defined above have natural hierarchical relationships that are 

captured in the assignment of user attributes to other user attributes. Graphically, an 

attribute that is encompassed by another attribute (contained in) is assigned to the 

encompassing attribute and is presented above the encompassing attribute. We say that 

the assigned attribute is an ascendant of the attribute to which it is assigned. The user 

attributes defined above, along with the assignments implied by their intended 

interpretation, are presented graphically in Figure 19. This figure was generated by 

applying the policy_graph ‗ngac‘ command to the user sub-graph policy fragment 

presented in Table 4 as a DCL specification. 

 

Figure 19: Representative user attribute sub-graph of the ONA Ecosystem policy 

Table 4: ONA user attribute sub-graph policy specification 

policy('ONA_Policy_U','ONA Ecosystem', [ 

                     user_attribute('ONA'), 

                     user_attribute('ONA Mgt'), 

                     user_attribute('ONA FEng'), 

                     user_attribute('ONA Staff'), 

                     user_attribute('Cust'), 

                     user_attribute('CustA'), 

                     user_attribute('CustB'), 

                     user_attribute('CustA Staff'), 

                     user_attribute('CustB Staff'), 

                     user_attribute('3rd Party'), 

                     user_attribute('3rdP C'), 

                     user_attribute('3rdP C Staff'), 

 

                     assign('ONA Mgt','ONA Staff'), 

                     assign('ONA FEng','ONA Staff'), 

                     assign('ONA Staff','ONA'), 

                     assign('3rdP C Staff','3rdP C'), 

                     assign('3rdP C','3rd Party'), 

                     assign('CustA Staff','CustA'), 

                     assign('CustB Staff','CustB'), 

                     assign('CustA','Cust'), 

                     assign('CustB','Cust'), 

                     assign('ONA','ONA Ecosystem'), 

                     assign('Cust','ONA Ecosystem'), 

                     assign('3rd Party','ONA Ecosystem'), 

 

                     policy_class('ONA Ecosystem'), 

                     assign('ONA Ecosystem','PM'), 



D5.4 Full Prototype of the SPT Framework  

Page 76 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

                     connector('PM') 

]). 
 

NGAC object attributes (these are not the objects themselves): 

 ‗Cust Behav‘ – contains behaviour data for operator of machine 

 ‗Mach Usage‘ – contains machine usage data 

 ‗Mach M-Data‘ – contains machine manufacturing data 

 ‗Mach C-Data‘ – contains machine configuration data 

 ‗MachX M-Data‘ – contains manufacturing data for ONA machine X 

 ‗Owner Data‘ – contains data the owner may see 

 ‗All Data‘ – self explanatory 

NGAC ―objects‖ (data assets): 

 ‗MachA1 Cust Behav‘ – the customer behaviour data for machine A1 

 ‗MachA1 Usage‘ – the machine usage data for machine A1 

 ‗MachA1 Calib‘ – the calibration data for machine A1 

 ‗MachA1 Axis‘ – the axis compensation data for machine A1 

 ‗MachB1 Cust Behav‘ – the customer behaviour data for machine B1 

 ‗MachB1 Usage‘ – the machine usage data for machine B1 

 ‗MachB1 Calib‘ – the calibration data for machine B1 

 ‗MachB1 Axis‘ – the axis compensation data for machine B1 

The object attributes and the objects defined above, along with the assignments implied 

by their intended interpretation, are presented graphically in Figure 20. This figure was 

generated by applying the policy_graph ‗ngac‘ command to the user sub-graph 

policy fragment presented in Table 5 as a DCL specification. 

 

Figure 20: Representative object and object attribute sub-graph of the ONA Ecosystem policy 

Table 5: ONA object and object attribute sub-graph policy specification 

policy('ONA_Policy_OOA','ONA Ecosystem', [ 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 77 

Confidentiality: Public Distribution 

        object('MachA1 Cust Behav'), 

        object('MachA1 Usage'), 

        object('MachA1 Calib'), 

        object('MachA1 Axis'), 

        object('MachA1 Confg'), 

        object('MachB1 Cust Behav'), 

        object('MachB1 Usage'), 

        object('MachB1 Calib'), 

        object('MachB1 Axis'), 

        object('MachA1 Confg'), 

 

        object_attribute('MachA1 M-Data'), 

        object_attribute('MachB1 M-Data'), 

        object_attribute('Cust Behav'), 

        object_attribute('Mach Usage'), 

        object_attribute('Mach M-Data'), 

        object_attribute('Mach C-Data'), 

        object_attribute('Owner Data'), 

        object_attribute('All Data'), 

 

        assign('MachA1 Cust Behav','Cust Behav'), 

        assign('MachA1 Usage','Mach Usage'), 

        assign('MachA1 Calib','MachA1 M-Data'), 

        assign('MachA1 Axis','MachA1 M-Data'), 

        assign('MachA1 Confg','Mach C-Data'), 

        assign('MachB1 Cust Behav','Cust Behav'), 

        assign('MachB1 Usage','Mach Usage'), 

        assign('MachB1 Calib','MachB1 M-Data'), 

        assign('MachB1 Axis','MachB1 M-Data'), 

        assign('MachB1 Confg','Mach C-Data'), 

        assign('MachA1 M-Data','Mach M-Data'), 

        assign('MachB1 M-Data','Mach M-Data'), 

        assign('Cust Behav', 'Owner Data'), 

        assign('Mach Usage', 'Owner Data'), 

        assign('Owner Data', 'All Data'), 

        assign('Mach C-Data', 'Mach M-Data'), 

        assign('Mach M-Data', 'All Data'), 

        assign('All Data', 'ONA Ecosystem'), 

 

        policy_class('ONA Ecosystem'), 

        assign('ONA Ecosystem','PM'), 

        connector('PM') 

]). 
 

 

NGAC ―users‖ (subjects): Definition of users should be added to the ONA Ecosystem 

policy. These would be the identities of actual individuals who have identities 

established on the systems being used. Then assignments should be made for each user 

to appropriate user attributes. 

The last steps are to join the user side sub-graph with the object side sub-graph in a 

single policy file with both sub-graphs ascending from the ONA Ecosystem policy 

class, and to add the associations between attributes in the two sub-graphs to generate 

the permissions that conform to the organizational policies. 

NGAC ―associations‖: Table 6 shows the associations for the ONA Ecosystem policy. 

In this table the portions of the policy specification previously discussed are represented 

by the six comment lines at the beginning of the policy specification. 

Table 6: Associations for the ONA Ecosystem policy specification 

policy('ONA_Policy','ONA Ecosystem', [ 

        % user declarations 

        % user attribute declarations 



D5.4 Full Prototype of the SPT Framework  

Page 78 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

        % assignments to create user sub-graph structure (as above) 

        % object declarations 

        % object attribute declarations 

        % assignments to create object sub-graph structure (as above) 

 

        associate(‘ONA FEng’, [r,w], ‘Mach C-Data’), % configuration data 

        associate(‘ONA FEng’, [r], ‘Mach M-Data’), % mach manufacturing data 

        associate(‘ONA Mgt’, [r], ‘Owner Data’), % data with restricted access 

        associate(‘CustA Staff’, [r], ‘MachA1 M-Data’), % cust A owns Mach A1 

        associate(‘CustB Staff’, [r], ‘MachB1 M-Data’), % cust B owns Mach B1 

 

        policy_class('ONA Ecosystem'), 

        assign('ONA Ecosystem','PM'), 

        connector('PM') 

]). 
 

The illustrated associations shown: 

 provide read and write access to a all machine‘s configuration data by ONA 

Field Engineering staff 

 provide read access to all machine‘s manufacturing data by ONA Field 

Engineering staff 

 provide read access to all owner data only by ONA Management staff 

 provide read access to the machine manufacturing data of the machine A1 that is 

owned by customer A to customer A‘s staff 

 provide read access to the machine manufacturing data of the machine B1 that is 

owned by customer B to customer B‘s staff 

The final assembled policy shown in Table 7 has the graph shown in Figure 21. 

Table 7: ONA Ecosystem policy specification 

policy('ONA_Policy','ONA Ecosystem', [ 

        user('Jose'), 

        user('Itziar'), 

        user('Ian'), 

        user('Leandro'), 

        user('Rebecca'), 

 

        user_attribute('ONA'), 

        user_attribute('ONA Mgt'), 

        user_attribute('ONA FEng'), 

        user_attribute('ONA Staff'), 

        user_attribute('Cust'), 

        user_attribute('CustA'), 

        user_attribute('CustB'), 

        user_attribute('CustA Staff'), 

        user_attribute('CustB Staff'), 

        user_attribute('3rd Party'), 

        user_attribute('3rdP C'), 

        user_attribute('3rdP C Staff'), 

 

        assign('Jose','ONA Mgt'), 

        assign('Itziar','ONA FEng'), 

        assign('Ian','CustA Staff'), 

        assign('Rebecca','3rdP C Staff'), 

        assign('Leandro','CustB Staff'), 

 

        assign('ONA Mgt','ONA Staff'), 

        assign('ONA FEng','ONA Staff'), 

        assign('ONA Staff','ONA'), 

        assign('3rdP C Staff','3rdP C'), 

        assign('3rdP C','3rd Party'), 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 79 

Confidentiality: Public Distribution 

        assign('CustA Staff','CustA'), 

        assign('CustB Staff','CustB'), 

        assign('CustA','Cust'), 

        assign('CustB','Cust'), 

        assign('ONA','ONA Ecosystem'), 

        assign('Cust','ONA Ecosystem'), 

        assign('3rd Party','ONA Ecosystem'), 

 

        object('MachA1 Cust Behav'), 

        object('MachA1 Usage'), 

        object('MachA1 Calib'), 

        object('MachA1 Axis'), 

        object('MachA1 Confg'), 

 

        object('MachB1 Cust Behav'), 

        object('MachB1 Usage'), 

        object('MachB1 Calib'), 

        object('MachB1 Axis'), 

        object('MachA1 Confg'), 

 

        object_attribute('MachA1 M-Data'), 

        object_attribute('MachB1 M-Data'), 

 

        object_attribute('Cust Behav'), 

        object_attribute('Mach Usage'), 

        object_attribute('Mach M-Data'), 

        object_attribute('Mach C-Data'), 

 

        object_attribute('Owner Data'), 

        object_attribute('All Data'), 

 

        assign('MachA1 Cust Behav','Cust Behav'), 

        assign('MachA1 Usage','Mach Usage'), 

        assign('MachA1 Calib','MachA1 M-Data'), 

        assign('MachA1 Axis','MachA1 M-Data'), 

        assign('MachA1 Confg','Mach C-Data'), 

 

        assign('MachB1 Cust Behav','Cust Behav'), 

        assign('MachB1 Usage','Mach Usage'), 

        assign('MachB1 Calib','MachB1 M-Data'), 

        assign('MachB1 Axis','MachB1 M-Data'), 

        assign('MachB1 Confg','Mach C-Data'), 

 

        assign('MachA1 M-Data','Mach M-Data'), 

        assign('MachB1 M-Data','Mach M-Data'), 

 

        assign('Cust Behav', 'Owner Data'), 

        assign('Mach Usage', 'Owner Data'), 

        assign('Owner Data', 'All Data'), 

        assign('Mach C-Data', 'Mach M-Data'), 

        assign('Mach M-Data', 'All Data'), 

        assign('All Data', 'ONA Ecosystem'), 

 

        associate('ONA FEng', [r,w], 'Mach C-Data'), % configuration data 

        associate('ONA FEng', [r], 'Mach M-Data'), % mach manufacturing data 

        associate('ONA Mgt', [r], 'Owner Data'), % data with restricted access 

        associate('CustA Staff', [r], 'MachA1 M-Data'), % cust A owns Mach A1 

        associate('CustB Staff', [r], 'MachB1 M-Data'), % cust B owns Mach B1 

 

        policy_class('ONA Ecosystem'), 

        assign('ONA Ecosystem','PM'), 

        connector('PM') 

]). 

 
 

 



D5.4 Full Prototype of the SPT Framework  

Page 80 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

 

Figure 21: Graph of the ONA Ecosystem policy  



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 81 

Confidentiality: Public Distribution 

15.   APPENDIX D –NGAC APPLIED TO IISF SECURITY FUNCTIONS 

The IISF covers virtually all aspects of security, both technical (that is, mechanisms that are imple-

mented as hardware and/or software) and non-technical (that is, policies, procedures, and practices). 

Figure 22 shows the functional viewpoint of the IISF as six interacting building blocks, organized as 

three layers. The top layer represents the four core security functions, which are in turn supported 

by a data protection layer and a security model and policy layer. 

 

 
Figure 22: Functional Building Blocks of the IISF 

15.1. OVERVIEW OF NGAC APPLICABILITY IN THE IISF 

NGAC is concerned with security model and policy, so in Figure 23 we indicate, is a very coarse 

way, the role of NGAC relative to the functional building blocks of the IISF. In this and subsequent 

figures a solid green ellipse indicates a primary role, while a dashed ellipse indicates a secondary or 

optional role. 
 

 
Figure 23: Overview of NGAC role in IISF functional building blocks 



D5.4 Full Prototype of the SPT Framework  

Page 82 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

15.2. SECURITY MODEL AND POLICY 

Figure 24 illustrates role of NGAC within the functional breakdown for the security model and pol-

icy within IISF. The left side of this figure, Security Policy, is primarily non-technical and refers to 

organizational security goals and objectives. The right side, Security Model, is the technical aspect. 

NGAC is a technical measure providing security policy (mode) specification and enforcement. 

Thus, we show the emphasis of NGAC on the technical side. NGAC provides the capability to ex-

press and enforce a security model primarily at the end points. However, since NGAC is distribut-

ed, it depends on communications security. However, it is not primarily used to express or enforce 

communications and connectivity security policy as described by the NGAC standard. The follow-

ing analysis will present a more refined explanation of the role of NGAC in the IISF. 
 

  

Figure 24: Overview of NGAC role in IISF security model and policy functional breakdown 

15.3. ENDPOINT PROTECTION 

Figure 25 shows the IISF functional breakdown for endpoint protection and the role that NGAC can 

play in endpoint data protection. NGAC is not currently supported natively within ubiquitous oper-

ating systems, e.g. through a ―pluggable authorization module.‖ The current feasible deployments 

of NGAC depend on the endpoint‘s operating system to provide the basic security properties of 

isolation and integrity for the resources that it exports, and which are placed under the NGAC scope 

of control. Thus, the role of endpoint security model and policy is shared with the operating envi-

ronment (OE); for this reason a dashed ellipse is used to indicate NGAC‘s role in this aspect. 

NGAC can provide fine-grained access control to OE-exported resources, and can thus provide fi-

ne-grained integrity protection, in the sense of ―no unauthorized modification‖, for objects under its 

scope of control. 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 83 

Confidentiality: Public Distribution 

 
Figure 25: NGAC role in endpoint protection 

15.4. COMMUNICATION AND CONNECTIVITY PROTECTION 

Concerning communication and connectivity protection, the functional breakdown of which is illus-

trated in Figure 26, NGAC does not have a primary role as it is defined in the NGAC standard. It 

could be used to model permissions for endpoints to communicate, and we are investigating the use 

of NGAC‘s policy modeling capabilities to represent information flow control, but other aspects of 

communication security are outside the scope of NGAC. 

 

 
Figure 26: NGAC role in communication and connectivity protection 



D5.4 Full Prototype of the SPT Framework  

Page 84 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

15.5. SECURITY MONITORING AND ANALYSIS 

Figure 27 illustrated the IISF functional breakdown of security monitoring and analysis. NGAC 

does not cover this aspect of security. It is conceivable that NGAC could play a supporting role for 

this aspect, depending on the level of abstraction at which monitoring is conceptualized and imple-

mented, by protecting monitoring resources and granting use of those resources to monitoring 

agents. In this regard, monitoring is like NGAC itself because of its dependence on the operating 

environment to provide the underlying allocation of protection of resources used for monitoring. 

Whether monitoring resources are placed within the NGAC scope of control could be influenced by 

the consideration whether monitoring and its resources should be part of the overall access control 

policy, or weather it should be treated as a distinct subsystem from NGAC. 

 

 
 

Figure 27: NGAC role in monitoring and analysis 

15.6. SECURITY CONFIGURATION AND MANAGEMENT 

Figure 28 shows the application of NGAC in the context of the IISF‘s functional breakdown for 

security configuration and management. The primary application of NGAC is its natural role in 

controlling changes to security policy models as is recommended for NGAC-based enforcement 

mechanisms. It can also potentially be used for configuration and management data protection if 

effectively integrated with the operating environment and other management functions. NGAC 

could also be used for change control of security configuration data used by other security enforce-

ment mechanisms, thus further unifying security management. 
 



 D5.4 Full Prototype of the SPT Framework 

28 June 2020 Version 2.2 Page 85 

Confidentiality: Public Distribution 

 
Figure 28: NGAC role in security configuration and management 

15.7. DATA PROTECTION 

Figure 29 shows the role of NGAC in the functional breakdown of data protection. The primary 

application of NGAC is to provide security model and policy for endpoint data protection; this is 

NGAC‘s raison d’être. Because NGAC is not yet integrated into the operating environment, current 

NGAC implementations leverage the OE to build mechanisms that enforce NGAC policies. As 

mentioned with respect to security configuration and management, NGAC can be used to protect all 

manner of operational and security-related data, including communications-related data, configura-

tion data, and monitoring data. With appropriate policies and extensions to enforcement mecha-

nisms, NGAC can address a slice of data protection across the system, including data-at-rest 

(DAR), data-in-use (DIU), and data-in-motion (DIM), providing a higher-level abstraction of pro-

tections provided by the operating environment and the network hardware and software. 

 
Figure 29: NGAC role in data protection 



D5.4 Full Prototype of the SPT Framework  

Page 86 Version 2.2 28 June 2020 

Confidentiality: Public Distribution 

15.8. REFINED ROLE OF NGAC IN THE IISF 

Having examined the role, and potential roles, of Next Generation Access Control in various as-

pects of security within the Industrial Internet Security Framework, we now present in Figure 30 a 

refined view of NGAC‘s roles in the functional breakdown for security model and policy. Previous-

ly, in Figure 24 we identified in a broad sense the applicability of NGAC as centering on data pro-

tection security policy, endpoint security policy, and security model. 

 
Figure 30: NGAC role in security model and policy refined 

Here we assert NGAC‘s forte as the expression of data protection policies, providing a formal 

framework for policy models, an interpretation mechanism and a distributed enforcement frame-

work in its reference implementations. We call attention to the fact that the language of the IISF is 

somewhat nuanced in its distinction between security policy and security model, using ―security 

policy‖ to refer to informal organizational or regulatory policy, and ―security model‖ to refer to the 

more precise and machine process-able representations that NGAC refers to a ―policy specifica-

tion‖. In this sense, NGAC provides security model and enforcement, but only for those resources 

that are placed under its scope of control through an appropriate configuration of the underlying 

protection mechanisms of the operating environment. 

 

From the standpoint of policy specification the NGAC framework can be used to express abstract 

policy models of communications and connectivity security policies and protection of non-NGAC 

security-related data. As we have described in the foregoing presentation, such applications may 

include configuration & management security policy, monitoring & analysis security policy, com-

munications & connectivity security policy, in addition to endpoint security policy. The mecha-

nisms needed to enforce such additional policies must be provided in and NGAC-compatible way 

by creating policy enforcement points (PEPs) appropriate to the new resources and appropriate re-

source access points (RAPs) for those resources. These PEPs may call upon the NGAC policy deci-

sion point(s) (PDPs) to render access control verdicts based on the policies stored in the policy in-

formation point (PIP). 

 


