

Project Partners: ATB, Electrolux, IKERLAN, OAS, ONA, The Open Group, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SAFIRE Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the SAFIRE Project Partners.

Project Number 723634

D2.4 Full Prototype of Predictive Analytics Platform

Version 1.0

15 February 2019

Final

Public Distribution

IKERLAN

D2.4 Full Prototype of Predictive Analytics Platform

Page ii Version 1.0 15 February 2019

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Electrolux Italia

Claudio Cenedese

Corso Lino Zanussi 30

33080 Porcia

Italy

Tel: +39 0434 394907

E-mail: claudio.cenedese@electrolux.it

IKERLAN

Trujillo Salvador

P Jose Maria Arizmendiarrieta

20500 Mondragon

Spain

Tel: +34 943 712 400

E-mail: strujillo@ikerlan.es

OAS

Karl Krone

Caroline Herschel Strasse 1

28359 Bremen

Germany

Tel: +49 421 2206 0

E-mail: kkrone@oas.de

ONA Electroerosión

Jose M. Ramos

Eguzkitza, 1. Apdo 64

48200 Durango

Spain

Tel: +34 94 620 08 00

jramos@onaedm.com

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of York

Leandro Soares Indrusiak

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325 570

E-mail: leandro.indrusiak@york.ac.uk

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.2 Document outline and content guidelines 1 December 2018

0.4 Algorithm implementation details 25 January 2019

0.8 Updates and editing 1 February 2019

1.0 Final version 15 February 2019

D2.4 Full Prototype of Predictive Analytics Platform

Page iv Version 1.0 15 February 2019

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Overview .. 1

1.2 Approach Applied .. 1

1.3 Document Structure ... 2

2. Predictive Analytics Platform .. 2

2.1 Unified Processing Engine .. 3

2.2 Storage .. 3

2.3 Visualization .. 3

2.4 Scalability and High Availability .. 4

2.5 Implemented EP Functionalities ... 4

3. Integration with other Modules ... 7

4. Installation, Configuration and Usage... 8

4.1 Installation... 8

4.2 Configuration .. 8

5. Business Case specific customisation ... 8

5.1 Electrolux .. 8
5.1.1 Predictive Analytics .. 8
5.1.2 Boling Status Detection. ... 10
5.1.3 Temperature Estimation .. 18
5.1.4 Conclusions ... 25

5.2 ONA ... 25
5.2.1 Complex Event Processing ... 29
5.2.2 Predictive Analytics .. 33
5.2.3 Part’s Thickness Estimation .. 35
5.2.4 Conclusions ... 40

5.3 OAS.. 40

6. Software tools used for implementation .. 42

7. Conclusions .. 43

8. References .. 44

9. Appendix .. 45

9.1 NiFi Dataflows .. 45
9.1.1 ONA Cloud ... 45
9.1.2 ONA Link ... 57
9.1.3 Electrolux .. 68

9.2 Esper Rules .. 68

9.3 Predictive Analytics Templates ... 69
9.3.1 Templates to Define and Train Predictive Models .. 70
9.3.2 Templates to Develop Predictive Analytics REST Web Service and Clients ... 73
9.3.3 JSON Message format to access Predictive Analytics Service via MQTT, NiFi, Kafka. 81

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page v

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This document describes the Full Prototype of the software implementing the

functionality as specified in D2.2, demonstrating basic functionality of the Predictive

Analytics Platform. It includes a short description of the functionalities covered by the

early prototype and their integration into the SAFIRE infrastructure.

This deliverable is an evolution from D2.3 (Early Prototype of Predictive Analytics

Platform), including now the work performed to develop the full prototype. The main

additions are:

 Detailed description of work performed for the Business Cases.

 Full description of the used technologies.

 Description of Scalability and High Availability solutions.

 Requirements coverage table and statistics have been updated.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW

This document depicts the Full Prototype Analytics Platform based on:

 the first results from D1.1, Business Cases Requirements and Analysis,

 the results from D1.4, the SAFIRE Concept,

 the specification of Predictive Analytics Platform and

 the methodology for Predictive Analytics Platform

1.2 APPROACH APPLIED

For each of the main modules forming SAFIRE, a similar approach where a first step is

to analyse the requirements collected at Business Case requirements and analysis phase,

detail these and from there derive the data model, functional specification, external

interfaces, and technical specification.

The general approach followed to write the current document can be seen in Figure 1.

Figure 1: Approach followed for Full Prototype of Predictive Analytics Platform

D2.4 Full Prototype of Predictive Analytics Platform

Page 2 Version 1.0 15 February 2019

Confidentiality: Public Distribution

1.3 DOCUMENT STRUCTURE

The document consists of:

 Section 1. Introduction, which describes the purpose of the document, and

provides a brief overview of its contents.

 Section 2. Description of the Full Prototype (FP) implementation of the Predictive

Analytics Platform.

 Section 3. Briefly describes the integration with other modules.

 Section 4. Short description on how to install and configure the Predictive

Analytics Platform.

 Section 5. Describes the specific customisation for the SAFIRE business cases.

 Section 6. Presents the Software tools used for implementation

 Section 7. Conclusions and wrap up of the deliverable

2. PREDICTIVE ANALYTICS PLATFORM

The Predictive Analytics Platform allows to the SAFIRE users to do advanced analytics

in real time, storing huge amounts of data and web visualization tools to easily query

and visualize the stored data. Moreover, the Predictive Analytics Platform offers

different web services for interacting with different modules. An architectural overview

of the envisioned platform can be seen on Figure 2.

The Data Ingestion module is capable of keeping its current state in case the connection

to the data source is lost, and retrying the connection after a reasonable time has passed

without any loss of data. If the connection cannot be restored, a human operator is

notified to take action.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 3

Confidentiality: Public Distribution

Figure 2: Conceptual Predictive Analytics Platform architecture

The modules of the platform are described next.

2.1 UNIFIED PROCESSING ENGINE

The Unified Processing Engine provides support for doing advanced analytics on both

real-time and batch approaches. This module is based on Apache Spark. A Unified Big

Data Framework. Moreover, as defining complex real-time analytics is difficult right

now with that kind of frameworks a Complex Event Processing (CEP) engine has been

included on the platform covering this use case. The CEP engine used on SAFIRE is

called Espertech. Espertech, provides to the developer with Domain Specific Language

(DSL) language based on SQL that helps to define complex real time analytics patterns.

For the cases when Apache Spark is used for real-time scenarios, a custom UI interface

with a REST API for monitoring the different defined streaming queries has been

developed. This UI interface can be seen on the Figure 3.

Figure 3 - Spark UI module for real-time metrics

2.2 STORAGE

The relational storage is covered using PostgreSQL, a leading Open Source Relational

Database System. The relational database performs several of the data quality checks

listed in D2.5 Final Specification of Predictive Analytics Platform. The No-SQL storage

is covered by using Apache Cassandra Database, a key-value based database with

horizontal scalability properties and with great integration with the Big Data landscape

via different connectors. For each of the use cases of the platform, where to store the

data and what to store where (relational data or non-relational data) must be decided.

2.3 VISUALIZATION

In order to be able to visualize the results of the analytics two tools are provided within

SAFIRE Predictive Analytics Platform for different kind of users:

D2.4 Full Prototype of Predictive Analytics Platform

Page 4 Version 1.0 15 February 2019

Confidentiality: Public Distribution

1. Business Intelligence: in order to provide support for Business intelligence

dashboards Apache Superset tool is provided. provides an easy way to define

different web-based dashboards with a lot of connectors to multiple databases.

2. Data Scientist: in order to provide support for data scientists that need to

interact easily with the stored data in SAFIRE and need to execute interactive

advanced analysis over huge quantities of data and visualize those analyses in

an easy way, Apache Zeppelin is provided within SAFIRE to fulfil this task.

Zeppelin is a web-based notebook that provides support for interactive analytics

over Big Data easily.

2.4 SCALABILITY AND HIGH AVAILABILITY

High availability and scalability are supported through the use of a resource orchestrator

such as Kubernetes (unified resource manager), Mesos or Yarn. Tools like Spark make

use of this type of systems to be highly available. In addition, the deployed services

(API) can use this type of managers to be able to be restarted in different nodes or with

several instances, in order to distribute the load.

To achieve scalability, this type of managers has support to add and remove instances

during execution in order to have more resources available. Regarding the availability

of the algorithm, depending on the tool used and the algorithm itself, it will be possible

to perform an approximation (raise more instances of the algorithm) or to parallelize it

more (Spark MLLib has support for parallelizable algorithms).

2.5 IMPLEMENTED EP FUNCTIONALITIES

Some of the functionality already implemented (in the Early Prototype), has been

refined in the Full Prototype. An overview of the functionality implemented, is listed in

the following table using the requirements as a guide.

Table 1: Data Mining and Analytics Requirements

Req.
No.

Requirement Overall Priority Status

U78 Supports data mining to extract useful
patterns about operator behaviour

SHALL Implemented

U79 Supports data mining to extract useful
patterns about machine status

SHALL Implemented

U80 Supports data mining to extract useful
patterns about production process
status

SHALL Implemented

U81 Provides support for selection of
sensors / systems to be analysed

SHALL Implemented

U82 Provides support for selection of
information sources to be analysed

SHALL Implemented

U83 Provides support for data/sensor
composition functionality

SHALL Implemented

U84 Able to provide historical knowledge
about system deviations or problems

SHOULD Implemented

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 5

Confidentiality: Public Distribution

Req.
No.

Requirement Overall Priority Status

U85 Able to provide decision support for
production line selection

SHOULD False

U86 Able to increase visibility of the
production process

SHALL False

U87 Supports analysis for algorithm
definition for boiling/temperature
control functionality

SHALL True

U88 Supports sensitivity analysis to noise SHALL Implemented

U89 Supports main variation factor
identification and robust strategy for
minimising

SHOULD False

U90 Supports computational resources
estimation of machines

SHOULD False

U91 Supports estimation of performance
decrease for algorithm complexity
reduction

SHOULD False

U92 Supports process repeatability and
stability characterisation

SHALL False

U93 Supports Design of Experiments
(DOE) and Analysis of Variance
(ANOVA) analysis

SHOULD Implemented

Table 2: Performance Requirements

Req.
No.

Requirement Overall Priority Status

U115 Does not negatively affect the usual
production processes

SHALL Implemented

U116 Support for scalability in the size of
cloud and computing resources

SHALL True

U117 Support for horizontal scalability to
many machines

SHALL True

U118 Capable of real-time data ingestion
(registering data)

SHALL Implemented

U119 Capable of batch processing of data
(offline analysis)

SHALL Implemented

U120 Capable of real-time data processing SHALL Implemented

U122 Able to analyse relevant data within a
given timeframe

SHALL Implemented,
depending on the
Analytics and the

Computing
Resources

U123 Capable of storing up to 5
TB/year/machine with resource
recycling facilities

SHALL Implemented

U124 Provides support for Machine Learning SHALL Implemented

D2.4 Full Prototype of Predictive Analytics Platform

Page 6 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Req.
No.

Requirement Overall Priority Status

(Supervised / Unsupervised / Anomaly
Detection)

U125 Able to achieve required precision on
cooking process estimation /
optimisations

SHALL Implemented

Table 3: Integration Requirements

Req.
No.

Requirement Overall Priority Status

U130 Able to access data stored in a
relational database

SHALL Implemented

In the next charts a summary of the covered “shall” and “should” requirements is

presented.

Covered, 18

Non covered, 3

"Shall" requirements

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 7

Confidentiality: Public Distribution

3. INTEGRATION WITH OTHER MODULES

The Full Prototype of the Predictive Analytics Platform is integrated with the following

modules:

 Data-Ingestion: The data ingestion modules are NiFi templates that are in charge

of sending data to SAFIRE Kafka cluster. The following data ingestion modules

are available:

 OAS proNTo: The data ingestion module in the OAS case connects to the

Oracle database server of the proNTo system (simulated factory) and ingests

the data required by SAFIRE modules into the Kafka cluster.

 ONA Cloud: This data ingestion module in the ONA case connects to the

REST API of ONA cloud and ingests the data required by SAFIRE modules

into the Kafka cluster.

 ONA Machine: This data ingestion module in the ONA case connects to

the ONA machine using the XML based protocol, send it to the cloud via

remote NiFi to NiFi connection and then, data required by SAFIRE modules

is published into the Kafka cluster.

 Electrolux: The data ingestion module in the Electrolux case connects to

the data provided by the experimental cooker setup. Results are read from

Matlab/CSV files and sent to the cloud using the MQTT IoT protocol for

simulating a real scenario. Then, SAFIRE modules ingest data and send it to

the Kafka cluster.

Covered, 2

Non covered, 4

"Should" requirements

D2.4 Full Prototype of Predictive Analytics Platform

Page 8 Version 1.0 15 February 2019

Confidentiality: Public Distribution

For the full prototype, integration with other SAFIRE modules will be developed using

a Web service approach (e.g. asking for historical data stored in the Predictive Analytics

Platform).

4. INSTALLATION, CONFIGURATION AND USAGE

This section describes the installation, configuration and usage of the Full Prototype of

the Predictive Analytics Platform. The business case specific customisation is described

in Section 5.

4.1 INSTALLATION

The Predictive Analytics Platform can be downloaded from

https://gitlab.atb-bremen.de/SAFIRE/safire-predictive-analytics

The steps to install will be defined in a file in that repository. Note that some steps can

need a valid AWS account and can incur in AWS costs.

4.2 CONFIGURATION

As the Predictive Analytics platform has a huge list of Frameworks to configure. Each

one with different possibilities, please refer to the official documentation of each

framework where specific configuration is needed.

5. BUSINESS CASE SPECIFIC CUSTOMISATION

5.1 ELECTROLUX

5.1.1 Predictive Analytics

Electrolux Business Case has been tested by implementing the following two services:

 Boiling status detection of a pot without using direct physical sensors inside the

pot.

 Temperature estimation of a pot without using direct physical sensors inside the

pot.

The prediction service doesn’t know nor the amount of water in the pot, neither the

power applied to the pot, but only the currents in the coil and the temperature of the coil

itself. The models have trained off-line but can be invoked in real-time (order of

seconds) so that the detection (boiling or temperature) can be done in real-time.

The data flow needed for EP-support of the Electrolux business case in the Early

Prototype was simulated with a custom simulator that was reading offline data from

different Electrolux experiments (.csv files) and sending it to the standard

communication for the Internet of Things MQTT.

From that point, a simple NiFi template that can be seen on Appendix 8.1.3 was used to

ingest data for the SAFIRE Platform. An overview of can be seen on Figure 4.

https://gitlab.atb-bremen.de/SAFIRE/safire-predictive-analytics

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 9

Confidentiality: Public Distribution

Figure 4 - Detailed Data Flow for the Electrolux scenario in the Early Prototype

For Final Prototype data is gathered from Matlab (c) that is connected to a cooking and

sends the data to SAFIRE via MQTT, mosquito, NiFi and Kafka (and finally to Spark as

previous case) as shown in Figure 5.

Figure 5 - Detailed Data Flow for the Electrolux scenario in the Final Prototype

The data model used for Electrolux as the experiments contains different timestamps

with the data from all the currents of the induction hob. Moreover, each “row” also

contains whether the water is boiling or not.

Prediction Execution Flow

Real time prediction is executed by a Predictive Analytics service in the cloud

(developed in Java and deployed as a *.jar). When the cooking (or matlab(c)) invokes

the service (via message into MQTT or directly invoking the service via REST Web

Service), the service (1) loads a trained predictive model (spark model, keras model,

D2.4 Full Prototype of Predictive Analytics Platform

Page 10 Version 1.0 15 February 2019

Confidentiality: Public Distribution

etc), (2) evaluates the input with the model and (3) sends back to the caller the

prediction (via the same path as the invocation).

5.1.2 Boling Status Detection.

The goal is to be able to detect the boiling status of a pot without using direct physical

sensors inside the pot. Some promising advantages of boiling detection include:

 Water boiling detection (even, customised to each person).

 Boil maintenance.

 Milk boiling.

 Oil boiling.

 Food cooking status estimation (i.e. spaghetti cooking status, French fries, etc).

From sate of the art it is known that the thermal status of a pot can be evaluated by

indirectly measuring electrical parameters (such as currents in a coil). In the case of

Electrolux, a patent pending fast sweep process allows multiple Current vs. Frequency

measures at the same time with minimal interaction with the cooking process. This idea

has the advantage of having more data (more currents) available for detection.

Error! Reference source not found.Figure 6 shows a plot with a boiling process.

Graph on the left shows the temperature of the water (starting at 20º Celsius and

reaching 100º) and graph of the right shows the plotting of six currents (in amperes).

Typically, behaviour of the currents (after initial transition of about 60 seconds) is a

decreasing phase, followed by a plateau (flat) phase, and followed by a very little

increasing that indicates that the pot is boiling.

Figure 6 - Plot of currents during a boiling process

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 11

Confidentiality: Public Distribution

Sometimes, as in Figure 7 current shapes resulting from a boiling process show a clear

pattern of decrease-plateau-little increase shape. Therefore, boiling point identification

is relatively easy.

Figure 7: Boiling process with currents pattern easily showing the boiling point.

Unfortunately sometimes, as in Figure 8Figure 8Figure 7, current shapes resulting from

a boiling process don’t show a clear pattern of decrease-plateau-little increase shape. In

Figure 8Figure 8 it is not easy to recognize the end of the plateau phase. In this case,

boiling point identification is quite difficult.

Figure 8: Boiling process with current pattern with unclear boiling point.

Having multiple currents alleviates the problem described in Figure 8Figure 8. A close

look at the figure reveals that, although current F08, F09, F10 don’t show a clear boiling

point, currents F05, F06, F07 shows a much clearer boiling point. Thus, the use of

multiple currents may be an advantage.

D2.4 Full Prototype of Predictive Analytics Platform

Page 12 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Predictive Analytics has been used in this BC as follows:

 Training Phase – A neural network has been used with the help of 144 boiling

experiments carried out by Electrolux. For each experiment, Electrolux has

monitored, second by second, the value (in Amperes) of a set of currents. In

addition to this, a temperature sensor in the pot has measured the temperature

second by second. With this data, a machine learning algorithm, in this case a

Neural Network, has been trained to learn to recognise the boiling point of the

pot:

o 96 of the 144 experiments (66.6%) have been used as training set.

o 48 of the 144 experiments (33.3%) have been used as development

set.

 Testing Phase – Later, the neural network has been tested. For each experiment,

the testing has been done as follows:

o The neural network receives the currents second by second

(simulating a real time boiling process).

o Second by second, the neural network, with the current data received

so far, decides if the pot is boiling or not.

Next sections show details of the neural networks training processes and the results

achieved.

5.1.2.1 Neural Network architecture and training

Sample generation for training

A neural network consists of a stacked number of layers composed by neurons. The

network usually has one input layer (of fixed size), some hidden layers, and an output

layer. The key point here is that the input layer is a fixed size layer and therefore,

receives a current pattern of a fix number of points.

As it has been mentioned earlier, the network receives the currents second by second.

This means that network is first activated after the first valid 100 seconds (the very first

90 seconds are discarded as they are very noisy, so, from that point on, the values are

considered valid), but also, this means that after 100 seconds, the network has to deal

with an increasingly larger collection of values (representing all the values of a given

current received so far). Just an example, after 4 valid minutes of starting its job, the

network has 4x60=240 values (per current).

However, as mentioned at the beginning of this section, a network has a fixed input size

and cannot handle variable length inputs. To solve this problem, input signals are down

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 13

Confidentiality: Public Distribution

sampled to 100 points. In other words, each time a new value is received (second by

second), the whole signal received so far is down sampled to 100 points.

Figure 9: Sample generation

In Figure 9Figure 9 (graph on the right) red squares represents time windows. As time

passes, the whole signal (down sampled to 100 values) is passed to the network.

In addition to down sampling the signal received so far, it is convenient to eliminate the

noise of the signal. Some methods have been tried but finally, a down sampling and a

noise elimination is carried by a performing a polynomial regression (degree 3) of all

points received so far and. Then, the regressed signal is re-sampled in equally spaced

100 points. After down sampling, the values are normalized (mean 0, variance 1.0).

Figure 10: Samples softened and resized to 100 points with polynomial regression of different degrees

D2.4 Full Prototype of Predictive Analytics Platform

Page 14 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Several polynomial degrees have been tried and finally degree 3 has been found the

best. In addition to eliminating the noise, polynomial interpolation helps the neural

network to generalise better, avoiding overfitting.

With 144 experiments, this process generates a total of about 45.000 samples that are

labelled 0 (not boiling, in this case water temp < 98.0) or 1 (boiling, water tem >= 98.0).

These samples are given to the networks for training.

Networks architectures experimented

Several architectures have been tested so far:

 Fully Connected (Multilayer Perceptron) - a simple but powerful network in

which all neurons of a layer are connected to all neurons of next layer.

 LSTM (Long Short Term Memory) - networks with memory from past values.

 Convolutional NN - network which first layers consist of signal processing

convolutional filters.

 LSTM + Convolutional - combination of LSTM and Convolutional.

In addition to those architectures, two alternatives have been tried:

 Training one single network receiving one single current (usually F09 that is,

normally a very clean signal).

 Training one single network receiving multiple currents (in this case, currents

F08, F09, F10, as they are usually the cleanest signals).

 Training three single independent networks receiving each one just one single

current (F08, F09, F10, respectively) and using a kind of voting mechanism to

decide if the pot is boiling (all the three must agree in that the pot is boiling).

The third option (three networks with a voting mechanism) has been found more

accurate and robust. Figure 11Figure 11 shows training accuracy for all the three

networks (one per current). Accuracy represents the number of samples that are

correctly labelled.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 15

Confidentiality: Public Distribution

Figure 11: Training accuracy of the three neural networks (one network per current)

Testing procedure

After training with samples coming from 66.6% of the experiments, validation and test

procedure consists of evaluating the accuracy of the network with the remaining

samples, it is, 33.3% of the total available samples. To simulate a real situation, signal

values are collected second by second. Each second, the signal received so far is

processed (down sampled, regressed to 100 points and normalized) and passed to the

network to predict boiling. Accuracy represents the number of samples that are correctly

labelled.

Figure 12Figure 12 shows accuracy of validation and test sets as the number of training

epochs increases (in our case, validation and test sets are the same, as there are few

samples).

Figure 12: Validation/Test sets accuracy of the three neural networks (one network per current)

D2.4 Full Prototype of Predictive Analytics Platform

Page 16 Version 1.0 15 February 2019

Confidentiality: Public Distribution

5.1.2.2 Results: Accuracy of Detection in Time

Accuracy in Time

More important than accuracy of results in terms of % of samples correctly labelled is

the accuracy of boiling detection in time, in other words, the error of detection (in

seconds) with respect to the exact boiling time.

Results of experiment carried so far show the following results:

 Training three single network receiving each one just one single current:

o Three currents F08, F09, F10 respectively.

o Fully Connected Neural Network architectures.

o Voting mechanism (all three NN must classify sample as boiling).

o Mean time error in validation/test data 12.2s.

o Mean temperature difference in validation/test 0.84ºC.

o One case in validation/test data does not identify boiling point.

o Three cases in validation/test data with large errors (55s to 91s).

o Excluding those latter three cases, mean error in validation/test is

8.3s.

 Training one single network receiving one single current:

o Cleanest current used (F09):

o Fully Connected Neural Network architecture.

o Mean time error in validation/test 18.82s.

o Mean temperature difference in validation/test 1.22ºC.

o One case in validation/test data does not identify boiling point.

o Five cases in validation/test data with large errors (65s to 45s).

o Excluding those latter five cases mean error in validation/test is

14.59s.

 Training one single network receiving three currents at once:

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 17

Confidentiality: Public Distribution

o These are the worst results, probably due to the fact that there are too

few samples for such a complex network (a network processing three

currents at the same time becomes cumbersome).

Best network architecture

As mentioned before several architectures were tried but finally the simplest has been

found to be the best (it is simple but, at the same time, has full potential of behaving as

some of the others architectures). Best architecture so far was:

 X = Dense(100, input_dim=200, activation='relu')(X_input) – This one layer

with 100 input neurons that are fully connected to the next layer.

 X = Dense(40, activation='relu')(X) – second layer has 40 neurons that are fully

connected to the next layer.

 X = Dense(20, activation='relu')(X) – third layer has 20 neurons that are fully

connected to the next layer.

 X = Dense(10, activation='relu')(X) - fourth layer has 10 neurons that are fully

connected to the next layer.

 X = Dense(1, activation='sigmoid')(X) – final layer has one single neuron with

a sigmoid activation function. Its output is interpreted as a probability.

Conclusions

As a conclusion the better results are achieved by using multiple currents and training

three independent networks (trained separately each one with one current) and

implementing a voting mechanism (the pot is boiling when all the three networks

classify the sample as boiling).

It was expected that using more currents would improve detection accuracy, but it has

been discovered that training three independent networks and using a voting

mechanism, is a more robust solution because sometimes it has been observed that one

network is predicting that the pot is boiling but the other two don’t. This happens when

one of the currents has some random noise that may confuse the network. However, as

there are two more networks, the chance of having a noise that confuses all the three

networks at the same time is less probable, resulting into a more robust detection

algorithm.

Regarding the solution of one “big” network processing all signal currents at the same

time, it has been found that for such a complex network, many more samples would be

needed for training, so results are not conclusive (in our case, with the samples

available, the worst of all three alternatives).

D2.4 Full Prototype of Predictive Analytics Platform

Page 18 Version 1.0 15 February 2019

Confidentiality: Public Distribution

5.1.3 Temperature Estimation

The goal is to be able to estimate the temperature status of the water in the pot without

using direct physical sensors inside the pot.

In the previous test case (boiling) from state of the art it is known that the thermal status

of a pot can be evaluated by indirectly measuring electrical parameters (such as currents

in a coil). However, in the case of temperature estimation, to our knowledge, there are

no previous experiences of temperature estimation out from currents’ profiles and, in

the case of Electrolux, from coil temperature change profile.

Error! Reference source not found.Figure 13 shows a plot with a boiling process.

Graph on the left shows the temperature of the coil (starting at about 50º Celsius and

reaching more than 160º) and graph of the right shows the plotting of six currents (in

amperes). In previous test case, behaviour of the currents is known (decreasing phase,

plateau, very little increasing). In addition to this information, the network is fed with

the coil temperature (the profile shown in the graph is very typical).

Figure 13: Plot of coil temperature and currents during a boiling process.

The temperature of the coil has been analysed in the samples and it has been found that

the temperature increase follows always a similar pattern, an initial phase with rapid

temperature increase followed with an increase that decays with the time. This

temperature profile, along with the currents profile, helps the network to estimate the

temperature.

Predictive Analytics has been used in this BC as follows:

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 19

Confidentiality: Public Distribution

 Training Phase – A neural network has been used with the help of 144 boiling

experiments carried out by Electrolux. For each experiment, Electrolux has

monitored, second by second, the value (in Amperes) of a set of currents. In

addition to this, a temperature sensor in the pot has measured the temperature

second by second. With this data, a machine learning algorithm, in this case a

Neural Network, has been trained to learn to estimate the temperature of the

water in the pot:

o 96 of the 144 experiments (66.6%) have been used for training.

o 48 of the 144 experiments (33.3%) have been used for testing.

 Testing Phase – Later, the neural network has been tested. For each experiment,

the testing has been done as follows:

o The neural network receives, second by second, both the temperature

of the coil and the currents.

o The neural network estimates, second by second, the temperature of

the water in the pot.

Next sections show details of the neural networks training processes and the results

achieved.

5.1.3.1 Neural Network architecture and training

Sample generation for training

Sample generation is the same as in the case of boiling estimation but (a) samples are

labelled with the temperature of the water and (b) samples are enriched with samples of

the coil temperature, as shown in Figure 14.

D2.4 Full Prototype of Predictive Analytics Platform

Page 20 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Figure 14 – Plots of coil temperature and currents signal

As in the case of boiling estimation, a network has a fixed input size and cannot handle

variable length inputs. To solve this problem, all input signals are down sampled to a fix

number of points.

As the problem of temperature estimation is more difficult than boiling detection,

samples are down sampled to 200 points (instead of 100 points). After down sampling

and smoothing, the values are normalized (mean 0, variance 1.0). In addition to down

sampling, to eliminate the noise (as in the case of boiling estimation) the signal is

smoothed with a polynomial regression (degree 3).

However, coil temperature is not filtered as it is a very clean signal with very low noise.

Nevertheless, the signal values are normalized between 0.0 and 1.0 before passing to the

network.

Networks architectures experimented

Several architectures have been tested so far:

 Fully Connected (Multilayer Perceptron) - a simple but powerful network in

which all neurons of a layer are connected to all neurons of next layer.

 GRU (Gate Recurrent Units) - networks with memory from past values.

Following the experience gained with previous test case, boiling estimation, the

approach taken is training three single independent networks receiving each one just

one single current (F08, F09, F10, respectively) and the coil temperature and taken

the medium of the three temperatures estimated by the three networks.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 21

Confidentiality: Public Distribution

Testing procedure

After training with samples coming from 66.6% of the experiments, validation and test

procedure consists of evaluating the accuracy of the network with the remaining

samples, it is, 33.3% of the total available samples. In this case, accuracy represents the

medium square deviation from the actual temperature of samples and the temperature

predicted by the network.

5.1.3.2 Results: Accuracy of temperature estimation

Accuracy in temperature

Accuracy of results is given as a medium square deviation of the actual temperature

(labels of the samples) and the temperature predicted. Best results obtained for the three

single independent networks are the following:

 Network for F08 + Coil

o Trained Samples

 Mean Square Deviation: 0,0027

 Mean Absolute Error: 3,8 Cº

o Test Samples

 Mean Square Deviation: 0,0049

 Mean Absolute Error:4,89 Cº

 Network for F09 + Coil

o Trained Samples

 Mean Square Deviation: 0,0025

 Mean Absolute Error: 3,64 Cº

o Test Samples

 Mean Square Deviation: 0,0047

 Mean Absolute Error: 4,72 Cº

 Network for F10 + Coil

o Trained Samples

 Mean Square Deviation: 0,0024

 Mean Absolute Error: 3,63 Cº

D2.4 Full Prototype of Predictive Analytics Platform

Page 22 Version 1.0 15 February 2019

Confidentiality: Public Distribution

o Test Samples

 Mean Square Deviation: 0,0049

 Mean Absolute Error: 4,84 Cº

The following Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19 show a variety

of examples of temperature estimation for Test Samples, it is, non-trained samples.

Orange line represents the actual temperature of water while blue line represents the

temperature estimated by the network (mean of three networks’ estimations). Scale Y

axis of the graphs are labelled with 5º steps.

Figure 15 – Temperature estimation for case 10-jul-2014 10:48:43

Figure 16 - Temperature estimation for case 10-jul-2014 11:44:44

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 23

Confidentiality: Public Distribution

Figure 17 - Temperature estimation for case 10-jul-2014 12:35:40

Figure 18 - Temperature estimation for case 10-jul-2014 12:56:16

Figure 19 - Temperature estimation for case 10-jul-2014 13:08:05

It is worth noting that the temperature estimation error at the end is less pronounced

than at the beginning. This is to be expected as at the end of the boiling process more

signal is available to the network, therefore, more accuracy is to be expected.

D2.4 Full Prototype of Predictive Analytics Platform

Page 24 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Best network architecture

As mentioned before several architectures were tried but, so far, an architecture

composed by two subnetworks (one to process currents and another to process coil

temperature), followed by a subnetwork that combines both subnetworks, has been

found to be the best. Best architecture so far was:

Subnetwork to process Signals Currents

 X_input = Input(shape = X_input_shape)

 X = Dense(50, input_dim=200, activation='relu')(X_input) – Layer with 50

neurons fully connected to the next layer-

 X = Dropout(0,2)(X) – Dropout to avoid overfitting

 X = Dense(20, input_dim=200, activation='relu')(X) – Layer with 20 neurons

fully connected to the next layer-

 X = Dropout(0,2)(X) – Dropout to avoid overfitting

 X = Dense(4, activation='relu')(X)

Subnetwork to process Coil Temperature

 C_input = Input(shape = C_input_shape)

 C = Dense(50, input_dim=200, activation='relu')(C_input) – Layer with 50

neurons fully connected to the next layer-

 C = Dropout(0,2)(C) – Dropout to avoid overfitting

 C = Dense(20, input_dim=200, activation='relu')(C_input) – Layer with 20

neurons fully connected to the next layer-

 C = Dropout(0,2)(C) – Dropout to avoid overfitting

 C = Dense(4, activation='relu')(C)

Subnetwork to combine and process both subnetworks

 XC = Concatenate()([X, C])

 XC = Dense(8, activation='relu')(XC)

 XC = Dense(4, activation='relu')(XC)

 XC = Dense(2, activation='relu')(XC)

 XC = Dense(1, activation='linear')(XC)

Note that final network has just one neuron that outputs the estimated temperature.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 25

Confidentiality: Public Distribution

5.1.4 Conclusions

As a conclusion the better results are achieved by using multiple currents and coil

temperature values. Network architecture composed by two subnetworks (one to

process currents and another to process coil temperature) followed by a subnetwork that

combines both subnetworks.

Temperature accuracy, in the mean case, is less than 5º C, which is a good result,

particularly because at the end of the boiling process (when accuracy is needed), the

accuracy is even better.

5.2 ONA

The ONA ingests data provided the ONA Industrial Cloud (OIC). The OIC is provided

by SAVVY Data Systems and the data contained in it can be accessed using a REST

API. The ingestion module uses this API to access the data.

The available data consists of metadata and the actual machinery data. The metadata can

be divided into the following types.

 Location: The location data includes the different actual physical locations

available. For each location, the unique location ID, name of the enterprise,

name of the location, location coordinates, and time zone.

 Machine: Machine data refers to the individual machines that are being

monitored. The available data consists of the unique machine ID, its name,

whether it is active or not, the ID of the physical location (the same ID as in the

location metadata), and the timestamp of last received information.

 Group: This type of metadata relates to the capture groups of indicators. For

each group the unique ID, group name, description, collection frequency, data

size, whether it is active or not, the timestamp of last modification date, and the

machine and location IDs of the machine a particular capture group belongs to.

 Indicator: This metadata includes information of each of the monitored

variables. For each variable the unique ID, variable name, description, origin,

whether it is active or not, and the IDs of the group, machine and location they

belong to are provided. If the indicator also has a minimal, maximal, and

optimal values, these are also provided.

On the other hand, the actual machinery indicator data can be consumed in two ways:

by means of individual requests, or through a stream of data. Individual requests have to

include the start timestamp and end timestamp, and the response will only contain

information generated in that timeframe. However, each request has a maximal

timeframe and repeatedly requesting data while moving the timeframe is discouraged. If

continuous monitoring of the indicators is desired, the streaming data should be used. In

this case, a single request is made for a specific machine (or a list of machines) and the

D2.4 Full Prototype of Predictive Analytics Platform

Page 26 Version 1.0 15 February 2019

Confidentiality: Public Distribution

server will respond with the latest available data. The client should read the response

and keep the connection open for further reading, as the server will keep dumping new

data into the connection until it is disconnected. Thus, the ONA Monitor reads indicator

data through the data stream.

The Early Prototype of the ONA monitor reads data from the REST API and processes

it using Apache NiFi. The NiFi dataflow then persists this data into a PostgreSQL

relational database and also published on Apache Kafka for further distribution.

Figure 20 - Data transfer from the REST API into the ONA Monitor.

The metadata dataflow, depicted in Figure 21, ingests metadata from the REST API.

Each type of metadata is provided by a different endpoint and is acquired in the

following way. First, the system polls for available locations, and the response indicates

the IDs for the locations the user has permission to read from. For each available

location metadata is requested, and then the list of available machines on that location is

requested. Then, each machine is polled, the machine metadata is stored, and also the

capture groups for that machine are requested. Then, for each capture group, the group

metadata is requested, followed by a request of the indicators belonging to that group.

Finally, for each indicator, the metadata is requested. The server responds using the

JSON objects as shown on Error! Reference source not found.. All this data is stored

n the PostgreSQL relational database with a structure based on the objects returned by

the server. Figure 21 shows the data model for the metadata. Metadata information

ingestion is done periodically to check for new information, but not too frequently to

comply with the API’s anti-abuse policy.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 27

Confidentiality: Public Distribution

Figure 21 - Metadata data model.

{

 "locationId": "E1L1",

 "enterpriseName": "Empresa de demo",

 "locationName": "Taller",

 "geolocation": "43.301227464575554,-2.0148110389709473",

 "timezone": "Europe/Madrid"

}

Figure 22 - Example of REST API response for location metadata.

On the other hand, the streaming dataflow works in a different way. It only makes one

request each time it is executed but keeps the connection open to keep receiving data,

and then the data is processed much more thoroughly. The dataflow has four main parts:

 The API client group. Shown in Figure 35 (Appendix).

 The Stream Splitter group. Shown in Figure 36 (Appendix).

D2.4 Full Prototype of Predictive Analytics Platform

Page 28 Version 1.0 15 February 2019

Confidentiality: Public Distribution

 The PostgreSQL insertion group. Shown in Figure 37 (Appendix).

 The Kafka redistribution group. Shown in Figure 38 (Appendix).

The API client group is the interface with the REST API. This group contains

processors that prepare and execute the connection with the API. First the authorization

parameters are calculated and set. Then, the ONAStreamProcessor, a custom processor

developed for this project, opens a connection to the API and keeps it open to read new

data as the server sends it. It works by not only triggering the next node in the dataflow

when data is received and transferred, but also makes sure that the processor calls itself

to be ready when new data arrives.

Each time a data package is received, it only regards a single machine and capture

group, but can contain data of many indicators.

The stream splitter group makes some slight processing of the data, but only the

modifications necessary to both insert it into PostgreSQL and republishing into Kafka.

The PostgreSQL insertion group first splits the data so that each flowfile of the dataflow

only includes a single indicator and its value. Then, the flowfiles are filtered so that only

the files containing the variables we are interested in continue in the process, and the

rest are dropped. This filtering benefits the overall system as it frees resources from

processing and storing unnecessary data. Then the data is modified so that it ends up

with a format conforming to a JSON object that contains all necessary data (machineId,

locationId, indicatorId, value, and timestamp) to convert it into an SQL query and insert

it into the database.

The Kafka redistribution group publishes the data without altering its structure. This

means that, unlike in the PostgreSQL insertion group, data is sent in a message in a

similar structure as it is received, and not split until each flowfile contains a single

indicator. However, the flowfiles do undergo some processing, in order to drop

flowfiles with no real data, and normalize indicator and machine names. Before

republishing the data into Kafka, the JSON objects are serialized into the avro binary

format, as this format is more efficient for digital transfer and storage. The schema for

the avro records is shown on Figure 23.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 29

Confidentiality: Public Distribution

{

 "type": "record",

 "name": "onaRecord",

 "fields": [{

 "name": "machine",

 "type": "string"

 }, {

 "name": "group",

 "type": "string"

 }, {

 "name": "timestamp",

 "type": "string"

 }, {

 "name": "data",

 "type": {

 "type": "array",

 "items": {

 "type": "record",

 "name": "data",

 "fields": [{

 "name": "indicator",

 "type": "string"

 }, {

 "name": "value",

 "type": "string"

 }

]

 }

 }

 }

]

}
Figure 23 - Avro Schema for Kafka messages.

Another developed approach for obtaining data from ONA machines can be seen on

Appendix 8.1.2.

5.2.1 Complex Event Processing

The Complex Event Processing (CEP) engine is in charge of processing the raw data

and creating complex indicators based on individual events received by the engine, and

acting upon them. It has been implemented using the Espertech engine.

The CEP engine ingests data from a Kafka broker, and persists the generated complex

indicators in a PostgreSQL database. Afterwards, a data visualization framework,

Apache Superset, feeds off of the persisted data to display the complex indicators for

human consumption through a web interface. Figure 24 shows the flow of the data from

D2.4 Full Prototype of Predictive Analytics Platform

Page 30 Version 1.0 15 February 2019

Confidentiality: Public Distribution

ingestion to visualization. The CEP engine itself is wrapped within a Java program. This

program ingests the data from the broker, feeds it to the Espertech engine and

subscribes to the output of the Espertech engine, forwarding its results to the database.

The rules for the engine are described in the Event Processing Language (EPL)

language, a SQL-like Doamin Specific Language (DSL) developed for Espertech.

Figure 24 – Complex Event Processing flow

The events received by the CEP engine contain four pieces of information:

 Timestamp

 Machine ID

 Indicator ID

 Indicator value

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 31

Confidentiality: Public Distribution

From the same message stream events related to different machines are received, in

chronological order. One of the first steps performed by the CEP engine is to pivot the

received events by their machine ID and the (approximate) timestamp. Thus, it is the

CEP engine’s job to turn simple events like:

Timestamp Machine ID Indicator ID Indicator Value

2018/12/01

10:00:00.245

1 A 84

2018/12/01

10:00:00.255

1 C 43

2018/12/01

10:00:00.305

2 B 21

2018/12/01

10:00:00.551

2 A 86

2018/12/01

10:00:00.601

1 B 0

2018/12/01

10:00:00.817

2 C 100

Into complex events like:

Timestamp Machine ID A B C

2018/12/01

10:00:00

1 84 0 43

2018/12/01

10:00:00

2 86 21 100

The CEP engine only monitors certain variables provided by the SAVVY API. The list

of the monitored variables is the following:

 Ambient Temperature (ambientTemperature, measured by location, independent

of the machine)

 Conductivity (conductivity)

 Speed (speed)

 Remaining Spool Percent (spoolRemainingWirePercent)

 Remaining Spool Length (spoolRemainingWireLength)

 Spool Type (spoolType)

D2.4 Full Prototype of Predictive Analytics Platform

Page 32 Version 1.0 15 February 2019

Confidentiality: Public Distribution

 Theoretical Max. Speed (technological_theoreticalSpeed)

 Current Wire Thickness (thickness)

 Wire Speed (wireSpeed)

 Wire Type (wireType)

 Wire Diameter (wireDiameter)

 Red Semaphore: Flag 1 (semRojoFlag1)

 Red Semaphore: Flag 2 (semRojoFlag2)

 Red Semaphore: Flag 3 (semRojoFlag3)

 Red Semaphore: Flag 4 (semRojoFlag4)

 Amber Semaphore: Flag 1 (semAmbarFlag1)

 Amber Semaphore: Flag 2 (semAmbarFlag2)

 Amber Semaphore: Flag 3 (semAmbarFlag3)

 Amber Semaphore: Flag 4 (semAmbarFlag4)

 Amber Semaphore: Flag 5 (semAmbarFlag5)

 Green/Gray Semaphore: Condition 2 (semVerdeCond2)

 Grey Semaphore: Flag 1 (semGrisVerdeCond1)

 Grey Semaphore: Flag 1 (semGrisCond2)

 Grey Semaphore: Flag 1 (semGrisCond3)

The CEP engine keeps the state of each monitored machine in the current timestamp.

Even though the event timestamp has a millisecond-level granularity, the timestamp of

the state is kept at second-level. This gives the system some flexibility, and, since data

from a single machine is received, at most, once per second there is no possibility of

data overlap within the same second.

The state of a machine includes all of the monitored variables. When a new event is

received, the engine checks whether the timestamp of the current state for that machine

and the timestamp of the event coincide. If they do, the value of the indicator is

registered in the state. If the timestamps do not match, the old state is published (even if

values for all indicators were not registered) and the current state of the machine is

reset.

Once the state is published, the computing of complex indicators begins. This is done in

several steps, because some complex indicators require other complex indicators being

computed in an earlier stage.

The produced warnings are:

 Whether the machine is running or not

 Whether the conductivity has been above a pre-established threshold or not

 Whether the conductivity has been below a pre-established threshold or not

 Whether the remaining spool percent has been above a pre-established

percentage threshold or not

 Whether the change in temperature in the previous hour was above a pre-

established threshold or not

 Whether the change in temperature in the previous 24 hours was above a pre-

established threshold or not

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 33

Confidentiality: Public Distribution

The rules created to obtain these warnings are listed in Appendix 9.2.

These warnings are visualized in a Superset dashboard by means of chronograms.

Figure 25 shows a Superset dashboard used in SAFIRE using chronograms. In these

chronograms the X axis represents time. Each bar along the Y axis shows relates to a

different warning and the colour or the bar in a period of time indicates for how much of

that period the warning was active, with a darker colour representing more time with the

active warning.

Superset dashboards are set-up using a mix of its web interface and database-dependent

sentences. For relational databases, such as in this case, the used database-dependent

sequences are written in SQL. The superset dashboard has some parametrizable options

such as the machine (or machines) to visualise and the time range (by default the last

24h).

Figure 25 – Chronograms in Superset

5.2.2 Predictive Analytics

In the context of Wire Electrical Discharge Machining (WEDM), one the goals of this

BC application is to be able to predict, in advance, the event of change of thickness of

the machined part. The ability able to know in advance that a change of thickness is

coming helps improving the cutting process.

WEDN process works by generating short electrical discharges between the cutting wire

of the machine and the part to be machined through a dielectric fluid (deionised water).

D2.4 Full Prototype of Predictive Analytics Platform

Page 34 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Figure 26: WEDM cutting process

Each discharge generates a little crater of few micrometres in the part, thus, drawing the

shape of the part. Figure 27Figure 27 shows the voltage profile of several discharges.

Figure 27: Voltage profile of several discharges

During the process of cutting a part, as the wire approaches a change in the thickness of

the part, the discharge pattern changes (because the pressure of the dielectric fluid is lost

or changes).

Figure 28: WEDM cutting with changing thickness parts

When the thickness of the part to be machined changes, to avoid degrading the cutting

process, some process parameters need to be adapted. It would be very useful to be able

to detect in advance this kind of events as the machine is cutting.

The key observation to develop such a detection system is that some features of the

discharge voltage pattern may indicate that a change of thickness is approaching.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 35

Confidentiality: Public Distribution

5.2.3 Part’s Thickness Estimation

5.2.3.1 Sample generation for training

A number of experiments have been conducted by Ona registering the discharge voltage

with an oscilloscope with a resolution of 100ns. During the experiments, five different

zones (each 1 mm width) have been defined as shown in Figure 29Figure 29: Zone 1 is

5 mm away from the change of thickness point (these are optimal conditions), Zone 2 is

4 mm away, Zone 3 is 3 mm away, Zone 4 is 2 mm away and, finally Zone5 is just 1

mm away. The experiment design has followed a previous experience reported in [1] in

which a neural networks approach is successfully applied to the case.

In each zone, a number of cutting experiments were conducted (0,8mm cutting of the

total 1mm width of the zone, as the remaining 0,2mm are used to reset the

oscilloscope). Each cutting experiment is divided in 2s sequences, registering the

voltage with a sampling rate of 100ns, giving a total of 20.000 sample values per 2s

sequence (voltage ranges from 120V to -120V). Each 2s sequence is labelled with a

number 1 to 5 according to the zone in which the wire was cutting.

A total of 567 sequences have been recorded, each one of 2 ms (with 20.000 voltage

values) and each sequence is labelled with the zone value (1 to 5).

Figure 29: Zone definition during cutting experiments

Predictive Analytics has been used in this BC as follows:

 Training Phase – A variety of machine learning algorithms have been trained

with 70% of the sequences (with a balance between zones).

 Testing Phase – Later, the algorithms have been tested with the remaining 30%

of sequences.

D2.4 Full Prototype of Predictive Analytics Platform

Page 36 Version 1.0 15 February 2019

Confidentiality: Public Distribution

5.2.3.2 Feature Extraction for each sample

For each sample, a set of features is extracted. The set of feature values for each sample

(that will be used later to train machine learning algorithms) are the following:

 Sparks per Second category:

o Global Average Sparks/Sec – Average number of sparks per second

found in the sample.

o Td Low Average Sparks/Sec – Average number of sparks/sec with low

ignition delay time (td < 0.5 µs).

o Td Ok Average Sparks/Sec – Average number of sparks/sec with ignition

delay time ok (0.5 µs <= td <= 10 µs).

o Td High Average Sparks/Sec – Average number of sparks/sec with high

ignition delay time (10 µs < td).

 Max Peak, Duration and Energy category:

o Average Max Peak – Average pulse voltage max peak.

o Average Duration – Average pulse duration.

o Average raw Energy – Average raw energy discharge by the pulse,

computed as absolute area inside the peak.

 Delay Time category:

o Td Low Average Delay Time – Average delay time of sparks with low

ignition delay time (td < 0.5 µs).

o Td Ok Average Delay Time – Average delay time of sparks with ignition

delay time ok (0.5 µs <= td <= 10 µs).

o Td High Average Delay Time – Average delay time of sparks with

ignition high delay time (10 µs < td).

 Ionization Phase Voltage category:

o Td Low Average Ionization Phase Voltage – Average voltage during

ionization phase for sparks with low ignition delay time (td < 0.5 µs).

o Td Ok Average Ionization Phase Voltage – Average voltage during

ionization phase for sparks with ignition delay time ok (0.5 µs <= td <=

10 µs).

o Td High Average Ionization Phase Voltage – Average voltage during

ionization phase for sparks with high ignition delay time (10 µs < td).

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 37

Confidentiality: Public Distribution

Figure 30, Figure 31 and Figure 32 below show concepts involved in the features

(ignition delay time, ionization phase, pulse duration, pulse max peak, etc). For a

detailed description of these concepts see [2].

Figure 30 – Ignition delay time and ionization phase details

Figure 31 – Pulse Voltage max peak, Duration and Energy

D2.4 Full Prototype of Predictive Analytics Platform

Page 38 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Figure 32 – Averages of Feature values for the different Zones

Signal Features directly served by Machine’s Controller

ONA machine’s controller is able to generate directly the features described above with

a period of milliseconds. Therefore it is possible to add a local machine learning module

in the machine that detects in real-time that a part-thickness change is approaching. The

module can be installed in an industrial PC inside the machine getting data generated by

the machine’s controller.

5.2.3.3 Machine Learning Algorithms tested

Predictive Analytics has been used in this BC with the following Spark’s machine

learning algorithms:

 Logistic Multi Class Regression

 Random Forest Trees

 Decision Trees

Python PySpark Source code of the algorithms and their parameters can be found in

Appendix 9.3.1.1.

5.2.3.4 Testing procedure

After training with 70% of the samples the test will be done with the remaining 30% of

the samples. The machine learning trained models will try to classify the sample in one

of the five zones and a confusion matrix will be computed to analyse the results.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 39

Confidentiality: Public Distribution

5.2.3.5 Results: Accuracy of Zone Detection

Better results have been produced by Logistic Multi Class Regression classification.

Accuracy achieved by each of the four algorithms can be found in Table 2. For samples

in each zone type, the accuracy in being identified as correct or as other type is given.

LogisticReg RandomForest DecisionTree

Class 1 Samples

Classified as 5 0.0 % 0.0 % 0.0 %

Classified as 4 10.4 % 6.6 % 8.3 %

Classified as 3 28.8 % 23.0 % 38.6 %

Classified as 2 56.0 % 41.0 % 37.1 %

Classified as 1 4.8 % 29.5 % 16.0 %

Class 2 Samples

Classified as 5 0.0 % 0.0 % 0.0 %

Classified as 4 3.7 % 6.2 % 3.1 %

Classified as 3 27.4 % 31.0 % 37.5 %

Classified as 2 66.7 % 40.7 % 40.6 %

Classified as 1 2.2 % 22.1 % 18.7 %

Class 3 Samples

Classified as 5 2.1 % 1.2 % 0.7 %

Classified as 4 20.3 % 19.4 % 13.8 %

Classified as 3 46.2 % 39.4 % 57.2 %

Classified as 2 29.4 % 25.0 % 22.5 %

Classified as 1 2.1 % 15.0 % 5.8 %

Class 4 Samples

Classified as 5 31.0 % 29.7 % 31.7 %

Classified as 4 60.0 % 52.3 % 47.0 %

Classified as 3 7.9 % 12.8 % 20.7 %

Classified as 2 1.3 % 3.0 % 0.6 %

Classified as 1 0.0 % 2.3 % 0.0 %

Class 5 Samples

Classified as 5 93.4 % 91.7 % 88.7 %

Classified as 4 6.7 % 8.3 % 11.3 %

Classified as 3 0.0 % 0.0 % 0.0 %

Classified as 2 0.0 % 0.0 % 0.0 %

Classified as 1 0.0 % 0.0 % 0.0 %

Table 2: Accuracy of Machine Learning algorithms in ONA case.

D2.4 Full Prototype of Predictive Analytics Platform

Page 40 Version 1.0 15 February 2019

Confidentiality: Public Distribution

5.2.4 Conclusions

Experiments conducted so far show that with Logistic Multi Class Regression algorithm

zone 5 can be detected in advance and is never mixed with zones 1, 2 and 3. Zone 5 is

correctly classified 93.4% of the times (1 mm before the change) but 6.7% of the times

is classified as zone 4.

Logistic Multi Class Regression was the better algorithm in samples of zones 1, 2, 4 and

5, but Decision Tree algorithm performed better for samples in zone 3.

This accuracy will improve with further experiments in which values of the features will

be provided directly by the machine’s control. Due to the fact that these values are

calculated directly by the micro controller, are more reliable than those calculated out

from the signals taken with an oscilloscope. Therefore it is expected an improvement in

the classification accuracy.

5.3 OAS

The use case is currently under development. Therefore, the changes that would have to

be made to support a new case will be depicted.

First, it is be necessary to see how to extract data from proNTo to SAFIRE platform.

proNTO is the process control system used by OAS and it stores data in a Microsoft

SQL Server database. In order to extract data from it a custom NiFi template should be

developed. This template will connect and interact to the database in order to extract

interesting events on different tables. The approach can be seen graphically on Figure

33.

Figure 33 – Local acquisition system to be developed for OAS

The local NiFi will send data to a remote NiFi running on SAFIRE platform. The

remote NiFi will perform basic transformations to the incoming data and send the data

to a Kafka cluster.

After the data is ingested the data should be analysed and custom analytics will be

developed using the tools provided by the Predictive Analytics module.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 41

Confidentiality: Public Distribution

D2.4 Full Prototype of Predictive Analytics Platform

Page 42 Version 1.0 15 February 2019

Confidentiality: Public Distribution

6. SOFTWARE TOOLS USED FOR IMPLEMENTATION

For the implementation of the Full Prototype several different development tools and

IDE1 have been used. For the overall development of all system modules and

components, the Apache Netbeans IDE has been used. The different software tools

used, together with their version, link and functionality they are being used for, are

listed in the following Table .

Table 4: Overview of used key software tools Table

Functionality Software Version Link

IDE Apache Netbeans

IntelliJ

>= 8.2

>=

2018.1.5

https://netbeans.apache.org/

Build-Management tool Maven >=3.5.3 https://maven.apache.org

Version Control GITlab

SVN

>= 2.3

Issue Management Jira >= 6.3

Infrastructure Automation Terraform >=0.11.7 https://www.terraform.io/

Infrastructure Provisioning Ansible >=2.4.3.0 https://www.ansible.com/

Programming Language Java >=

1.8.0_xx

http://www.java.com

Web Application Framework Spring >= 4.1 https://spring.io/

Infrastructure Provisioning Ansible >=2.4 https://www.ansible.com/

Infrastructure Automation Terraform >=0.11.7 https://www.terraform.io/

Runtime Environment / Applica-

tion Server

Jetty >= 8.0 https://www.eclipse.org/jetty/

Unified Big Data Engine Apache Spark >= 2.3.0 https://spark.apache.org/

Web based data science Apache Zeppelin >= 0.7.3 https://zeppelin.apache.org/

Business intelligence dashboards Apache Superset >=0.25.6 https://superset.apache.org/

Complex Event Processing Espertech >=7.1.0 http://www.espertech.com/

JPA-based persistence Hibernate >= 4.3 http://hibernate.org/

Database for testing H2 Database 1.3 http://www.h2database.com

Relational Database PostgreSQL >= 9.6 https://www.postgresql.org/

No-SQL Database Apache Cassandra >=2.2 https://cassandra.apache.org

Data processing and distribution Apache Nifi

Apache Kafka

>=1.6.0

>=1.1.0

https://nifi.apache.org

https://kafka.apache.org

Container virtualization Docker >=18.03.1-

ce

https://www.docker.com

1 Integrated Development Environment

https://netbeans.apache.org/
https://maven.apache.org/
https://www.terraform.io/
https://www.ansible.com/
http://www.java.com/
https://spring.io/
https://www.ansible.com/
https://www.terraform.io/
https://www.eclipse.org/jetty/
https://spark.apache.org/
https://zeppelin.apache.org/
https://superset.apache.org/
http://www.espertech.com/
http://hibernate.org/
http://www.h2database.com/
https://www.postgresql.org/
https://cassandra.apache.org/
https://nifi.apache.org/
https://kafka.apache.org/
https://www.docker.com/

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 43

Confidentiality: Public Distribution

7. CONCLUSIONS

This document presented the work done by SAFIRE in WP2, in particular in T2.3:

Early and Full Prototype of Predictive Analytics Platform, specifically it documents the

work on Full Prototype implementation.

Following the requirements and specification for SAFIRE Full Prototype defined in

accordance with SAFIRE Concept and Business Case requirements and analysis and the

following requirements definition, as well as the data model, external interfaces and

functional and technical specifications, the Full Prototype was developed. This

document serves as brief description of this Full Prototype implementation given that

the result of this task is the developed Software.

D2.4 Full Prototype of Predictive Analytics Platform

Page 44 Version 1.0 15 February 2019

Confidentiality: Public Distribution

8. REFERENCES

[1]. Sanchez JA, Conde A, Arriandiaga A, Wang J, Plaza S. Unexpected Event Predic-
tion in Wire Electrical Discharge Machining Using Deep Learning Techniques. Mate-
rials. 2018;11(7):1100. doi:10.3390/ma11071100.

[2]. Alessandra Caggiano,*, Roberto Teti, Roberto Perez, Paul Xirouchakis. Wire EDM
Monitoring for Zero-Defect Manufacturing based on Advanced Sensor Signal Pro-
cessing. 9th CIRP Conference on Intelligent Computation in Manufacturing Engi-
neering - CIRP ICME '14. Procedia CIRP 33 (2015) 315 – 320.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 45

Confidentiality: Public Distribution

9. APPENDIX

9.1 NIFI DATAFLOWS

In this section, the different Dataflows used for data ingestion are depicted. The code

for the XML templates and the different custom NiFi processors can be accessed via de

private repository of SAFIRE.

9.1.1 ONA Cloud

This section displays the NiFi dataflows used to ingest the ONA API data.

Figure 34 - NiFi dataflow for metadata ingestion.

D2.4 Full Prototype of Predictive Analytics Platform

Page 46 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Figure 7 - NiFi dataflow for stream data ingestion.

Figure 35 - NiFi dataflow for the API Client Group.

API Client
Group

Kafka Redis-
tribution
Group

Stream
Splitter
Group

PostgreSQL
Insertion
Group

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 47

Confidentiality: Public Distribution

Figure 36 - NiFi dataflow for the Stream Splitter Group.

Figure 37 - NiFi dataflow for the PostgreSQL Insertion Group.

D2.4 Full Prototype of Predictive Analytics Platform

Page 48 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Figure 38 - NiFi dataflow for the Kafka Redistribution Group.

package es.ikerlan.safire.nifi.processors;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.nifi.annotation.behavior.*;
import org.apache.nifi.annotation.documentation.CapabilityDescription;
import org.apache.nifi.annotation.documentation.SeeAlso;
import org.apache.nifi.annotation.documentation.Tags;
import org.apache.nifi.annotation.lifecycle.OnScheduled;
import org.apache.nifi.annotation.lifecycle.OnStopped;
import org.apache.nifi.annotation.lifecycle.OnUnscheduled;
import org.apache.nifi.components.PropertyDescriptor;
import org.apache.nifi.flowfile.FlowFile;
import org.apache.nifi.processor.*;
import org.apache.nifi.processor.exception.ProcessException;

import javax.net.ssl.HttpsURLConnection;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.SocketTimeoutException;
import java.net.URL;
import java.net.URLConnection;
import java.util.*;

@Tags({"example"})
@CapabilityDescription("Provide a description")
@SeeAlso({})
@ReadsAttributes({@ReadsAttribute(attribute="", description="")})
@WritesAttributes({@WritesAttribute(attribute="", description="")})
@TriggerSerially
public class ONAStreamProcessor2 extends AbstractProcessor {

 HttpsURLConnection conexion;

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 49

Confidentiality: Public Distribution

 InputStream inputStream;
 InputStreamReader inputStreamReader;
 BufferedReader bufferedReader;
 boolean sStop;

 boolean error;

 public static final Relationship REL_SUCCESS = new Relationship.Builder()
 .name("success")
 .description("The flow file with the answer received from socket will be
transferred to this relation")
 .build();

 public static final Relationship REL_FAILURE = new Relationship.Builder()
 .name("failure")
 .description("The flow file with the original request that failed will be
transferred to this relation")
 .build();

 public static final Relationship REL_ORIGINAL = new Relationship.Builder()
 .name("original")
 .description("The original request flow file received by the processor")
 .build();

 private List<PropertyDescriptor> descriptors;

 private Set<Relationship> relationships;

 static Log msgLog = LogFactory.getLog(ONAStreamProcessor2.class);

 @Override
 protected void init(final ProcessorInitializationContext context) {
 msgLog.info("init");
 final Set<Relationship> relationships = new HashSet<Relationship>();
 relationships.add(REL_SUCCESS);
 relationships.add(REL_FAILURE);
 relationships.add(REL_ORIGINAL);

 this.relationships = Collections.unmodifiableSet(relationships);
 }

 @Override
 public Set<Relationship> getRelationships() {
 return this.relationships;
 }

 @OnScheduled
 public void onScheduled(final ProcessContext context) {
 msgLog.info("onScheduled");
 sStop = false;
 error = false;

 conexion = null;
 inputStream = null;
 inputStreamReader = null;
 bufferedReader = null;

 //crearConexion y abrirInputStream no se pueden mover aquí, donde sería lo
lógico,
 //ya que necesitan parametros que llegan en el flowfile
 }

D2.4 Full Prototype of Predictive Analytics Platform

Page 50 Version 1.0 15 February 2019

Confidentiality: Public Distribution

 @Override
 public void onTrigger(final ProcessContext context, final ProcessSession session)
throws ProcessException {
 try {

 msgLog.info("onTrigger");

 if (session == null) {
 msgLog.info("!!!!!!!!!!!!!Session is null!! Should this happen?");
 return;
 }

 FlowFile flowFile = session.get();
 session.transfer(flowFile,REL_ORIGINAL);

 if (sStop) {
 msgLog.info("Stop already triggered. Don't do anything");
 session.remove(flowFile);
 return;
 }

 if (flowFile == null) {
 msgLog.info("!!!!!!!!!!!!!Flowfile is null!! Should this happen?");

 //flowFile = session.create();
 return;
 }

 Map<String, String> attributes = flowFile.getAttributes();

 String flowFileContent;
 try {
 if (conexion == null && !sStop) {
 crearConexion(attributes);
 }

 if (inputStream == null && !sStop) {
 abrirInputStream();
 inputStreamReader = new InputStreamReader(inputStream);
 bufferedReader = new BufferedReader(inputStreamReader);
 msgLog.info("Stream readers initialized");
 //flowFile =
session.putAttribute(flowFile,"XM2CSequence",String.valueOf(Long.valueOf(attributes.g
et("XM2CSequence"))+1));
 }

 if (!sStop) {

 if (!error) {
 while(!sStop){
 FlowFile newFlowFile = leerLinea(flowFile, session);
 newFlowFile =
session.putAllAttributes(newFlowFile,attributes);
 session.transfer(newFlowFile, REL_SUCCESS);
 session.commit();
 }

 } else {

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 51

Confidentiality: Public Distribution

 String linea = null;
 if ((linea = bufferedReader.readLine()) != null) {
 flowFile = session.putAttribute(flowFile, "error_data",
linea);
 }
 msgLog.info("Error: " + linea);
 session.transfer(flowFile, REL_FAILURE);
 sStop = true;
 }
 }

 String cause = null;
 if (error) {
 cause = "error";
 } else {
 cause = "user";
 }
 msgLog.info(String.format("Stop triggered by %s. Disconnecting",
cause));

 disconnect();

 } catch (MalformedURLException e) {
 msgLog.error(e);
 } catch (SocketTimeoutException e) {
 msgLog.error(e);
 } catch (IOException e) {
 msgLog.error(e);
 }
 } catch (Exception ex) {
 msgLog.error(ex.toString(), ex);
 }
 }

 void crearConexion(Map<String,String> attributes) throws
MalformedURLException,IOException,SocketTimeoutException {
 msgLog.info(System.identityHashCode(this)+" Opening connection. Attributes:
"+attributes);
 URL url = new URL(attributes.get("REMOTE_URL"));
 URLConnection conexionUrl = url.openConnection();
 if (!(conexionUrl instanceof HttpsURLConnection)) {
 throw new IOException("La URL no es una direccion HTTPS valida");
 }
 conexion = (HttpsURLConnection) conexionUrl;
 conexion.setAllowUserInteraction(false);
 conexion.setInstanceFollowRedirects(true);
 conexion.setRequestMethod(attributes.get("HTTP_TYPE"));

 conexion.setRequestProperty("Content-Type", attributes.get("CONTENT_TYPE"));
 conexion.setRequestProperty("X-M2C-Sequence",
attributes.get("XM2CSequence"));
 conexion.setRequestProperty("Authorization",
attributes.get("authorization_signature"));
 conexion.setReadTimeout(500000 * 1000);
 }

 void abrirInputStream() throws IOException{
 int responseCode;

D2.4 Full Prototype of Predictive Analytics Platform

Page 52 Version 1.0 15 February 2019

Confidentiality: Public Distribution

 responseCode = conexion.getResponseCode();
 msgLog.info("Response code " + responseCode);
 if (responseCode == 200) { // Respuesta correcta del servidor
 msgLog.info("getInputStream");
 inputStream = conexion.getInputStream();
 }
 else { // Respuesta error del servidor
 msgLog.info("getErrorStream");
 inputStream = conexion.getErrorStream();
 error = true;
 }
 }

 FlowFile leerLinea(FlowFile flowFile,ProcessSession session) throws IOException{
 String linea, datos;
 int numChar, actual;
 char[] buffer;
 FlowFile newFlowFile = null;

 if ((linea = bufferedReader.readLine()) != null) {
 msgLog.info("Reading Line "+flowFile+" "+session);
 numChar = Integer.parseInt(linea);
 buffer = new char[numChar];
 msgLog.info("Line will be "+numChar+" characters long");
 actual = bufferedReader.read(buffer);
 datos = new String(buffer);
 msgLog.info("Line was "+actual+" characters long. Data: "+(actual < 100 ?
datos : datos.substring(0,100)+"..."));
 msgLog.info("Received indicators: "+foundIndicators(datos));

 newFlowFile = session.create();
 // Update the name of the flowFile with data
 newFlowFile = session.putAttribute(newFlowFile,"streamRead",datos);
 // Update the name of the flowFile with the timeStamp
 newFlowFile =
session.putAttribute(newFlowFile,"filename",String.valueOf(System.currentTimeMillis()
));
 }
 else{
 msgLog.info("null line. Close stream?");
 }

 return newFlowFile;
 }

 private List<String> foundIndicators(String linea){
 List<String> ret = null;
 int hasiera,amaiera = -1;

 ret = new ArrayList<>();

 while((hasiera = linea.indexOf("\"I_",amaiera+1)) > -1){
 hasiera = hasiera+1;
 amaiera = linea.indexOf("\"",hasiera);
 ret.add(linea.substring(hasiera,amaiera));
 }

 return ret;
 }

 void disconnect()throws IOException{
 msgLog.info("DISCONNECT");
 if(bufferedReader != null){

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 53

Confidentiality: Public Distribution

 bufferedReader.close();
 inputStream = null;
 inputStreamReader = null;
 bufferedReader = null;
 }

 if(conexion != null){
 conexion.disconnect();
 conexion = null;
 }
 }

 @OnStopped
 public void onStopped(){

/* sStop = true;
 try {
 disconnect();
 } catch (IOException e) {
 msgLog.error(e);
 }
 */
 msgLog.info("OnStopped");
 }
 @OnUnscheduled
 public void onUnscheduled(){
 sStop = true;
 try {
 disconnect();
 } catch (IOException e) {
 msgLog.error(e);
 }
 msgLog.info("onUnscheduled");
 }
}

Code 2 - Custom processor for getting data to ONA Cloud API.

package es.ikerlan.safire.nifi.processors;

import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.commons.lang.exception.ExceptionUtils;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.nifi.annotation.behavior.*;
import org.apache.nifi.annotation.documentation.CapabilityDescription;
import org.apache.nifi.annotation.documentation.SeeAlso;
import org.apache.nifi.annotation.documentation.Tags;
import org.apache.nifi.annotation.lifecycle.OnScheduled;
import org.apache.nifi.annotation.lifecycle.OnStopped;
import org.apache.nifi.annotation.lifecycle.OnUnscheduled;
import org.apache.nifi.components.PropertyDescriptor;
import org.apache.nifi.dbcp.DBCPService;
import org.apache.nifi.flowfile.FlowFile;
import org.apache.nifi.processor.*;
import org.apache.nifi.processor.exception.ProcessException;
import org.apache.nifi.processor.io.InputStreamCallback;
import org.postgresql.ds.PGSimpleDataSource;
import org.apache.commons.io.IOUtils;

D2.4 Full Prototype of Predictive Analytics Platform

Page 54 Version 1.0 15 February 2019

Confidentiality: Public Distribution

import javax.sql.DataSource;
import java.io.IOException;
import java.io.InputStream;
import java.nio.charset.StandardCharsets;
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.SQLException;
import java.util.*;

@Tags({"example"})
@CapabilityDescription("Provide a description")
@SeeAlso({})
@ReadsAttributes({@ReadsAttribute(attribute="", description="")})
@WritesAttributes({@WritesAttribute(attribute="", description="")})
@InputRequirement(InputRequirement.Requirement.INPUT_REQUIRED)
public class SafirePostgreSQLInsertCustomProcedureInvocator extends AbstractProcessor
{

 static final PropertyDescriptor CONNECTION_POOL = new
PropertyDescriptor.Builder()
 .name("JDBC Connection Pool")
 .description("Specifies the JDBC Connection Pool to use in order to
convert the JSON message to a SQL statement. "
 + "The Connection Pool is necessary in order to determine the
appropriate database column types.")
 .identifiesControllerService(DBCPService.class)
 .required(true)
 .build();

 public static final Relationship REL_SUCCESS = new Relationship.Builder()
 .name("success")
 .description("The flow file with the answer received from socket will be
transferred to this relation")
 .build();

 public static final Relationship REL_FAILURE = new Relationship.Builder()
 .name("failure")
 .description("The flow file with the original request that failed will be
transferred to this relation")
 .build();

 private List<PropertyDescriptor> descriptors;

 private Set<Relationship> relationships;

 static Log msgLog =
LogFactory.getLog(SafirePostgreSQLInsertCustomProcedureInvocator.class);

 @Override
 protected List<PropertyDescriptor> getSupportedPropertyDescriptors() {
 final List<PropertyDescriptor> properties = new ArrayList<>();
 properties.add(CONNECTION_POOL);
 return properties;
 }

 @Override
 protected void init(final ProcessorInitializationContext context) {
 msgLog.info("init");
 final Set<Relationship> relationships = new HashSet<Relationship>();
 relationships.add(REL_SUCCESS);
 relationships.add(REL_FAILURE);

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 55

Confidentiality: Public Distribution

 this.relationships = Collections.unmodifiableSet(relationships);

 }

 @Override
 public Set<Relationship> getRelationships() {
 return this.relationships;
 }

 @Override

 public void onTrigger(final ProcessContext context, final ProcessSession session)
throws ProcessException {
 msgLog.info("onTrigger2");
 final FlowFile flowFile;

 flowFile = session.get();

 if(flowFile == null){
 //This can easily happen when using multiple processing units. All are
called, only one can acquire FlowFile.
 return;
 }

 try{
 msgLog.info("11
"+(session != null)+" "+(flowFile != null));
 InputStream in = session.read(flowFile);
 ObjectMapper mapper = null;
 JsonNode root = null;

msgLog.info("222"+(in !=
null));

 try {
 mapper = new ObjectMapper();

msgLog.info(String.format("33 %b
%b",mapper != null,in != null));

 root = mapper.readTree(IOUtils.toString(in, StandardCharsets.UTF_8));

msgLog.info("444");

 in.close();

msgLog.info("555");

 }
 catch(IOException ex){
 msgLog.info(ex.getMessage(),ex);
 session.transfer(flowFile,REL_FAILURE);
 }
 msgLog.info("inputStream closed");

 String machine, group, indicator;
 Double value = null;
 Long timestamp = null;

 msgLog.info(root.toString());

D2.4 Full Prototype of Predictive Analytics Platform

Page 56 Version 1.0 15 February 2019

Confidentiality: Public Distribution

msgLog.info("666");

 machine = root.get("machine").textValue();
 group = root.get("group").textValue();
 indicator = root.get("indicator").textValue();
 value = root.get("value").doubleValue();
 //timestamp = Long.valueOf(root.get("timestamp").textValue());
 String timestampo = root.get("timestamp").textValue();

 msgLog.info("777");

 try {
 //
 // Prepare a call to the stored procedure 'demoSp'
 // with two parameters
 //
 // Notice the use of JDBC-escape syntax ({call ...})
 //
 // onaschema.add_stream(machine text, "group" text,
indicator text, value double precision, "timestamp" text)
 msgLog.info(String.format("data: %s %s %s %f
%s",machine,group,indicator,value,timestampo));
 //call.setString(String,String) NO ESTÁ IMPLEMENADO PARA LA LIBRERIA
DE POSTGRESQL. CONSTRUIR EL CALL A PELO
 //se necesita usar Locale.US para que el punto decimal sea un punto y
no una coma.
 String call = String.format(Locale.US,"{call
onaschema.add_stream('%s', '%s', '%s', %f, '%s') }"
 ,machine.replace("'","\\'")
 ,group.replace("'","\\'")
 ,indicator.replace("'","\\'")
 ,value
 ,timestampo);
 msgLog.info("call: "+call);
 msgLog.info("Connection? "+conn);
 CallableStatement cStmt = conn.prepareCall(call
);

 cStmt.execute();
 session.transfer(flowFile,REL_SUCCESS);
 }
 catch (Exception ex) {
 msgLog.error(ex.getMessage(),ex);
 session.transfer(flowFile,REL_FAILURE);
 }
 }
 catch(NullPointerException npex){
 msgLog.info("StackTrace elements? "+npex.getStackTrace().length);
 msgLog.error(ExceptionUtils.getStackTrace(npex));
 throw npex;
 }
 session.commit();
 }

 PGSimpleDataSource ds = null;
 Connection conn = null;
 @OnScheduled
 public void onScheduled(final ProcessContext context) {
 msgLog.info("onScheduled <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<");

 try {

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 57

Confidentiality: Public Distribution

 conn =
context.getProperty(CONNECTION_POOL).asControllerService(DBCPService.class).getConnec
tion();
 msgLog.info("Connection set");
 } catch (Exception e) {
 msgLog.error(e);
 throw new RuntimeException(e);
 }
 }

 @OnUnscheduled
 void onUnscheduled(){
 msgLog.info("onUnscheduled <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<");
 }

 @OnStopped
 void onstopped(){
 msgLog.info("onStopped <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<");
 }

}

Code 3 - Custom processor for storing data to PostgreSQL database

9.1.2 ONA Link

Another method to acquire Data from ONA machines is to acquire data directly from

them using the ONA Link protocol. This protocol is based on XML and can be accessed

via direct telnet connection with the machines. With this method, a local instance of

NiFi will run in the same network than the ONA machine, then, the local NiFi will

extract data from the machine and will send it to a Remote NiFi that will be running on

SAFIRE platform.

The overall approach can be seen on Figure 39.

Figure 39 - NiFi dataflow for getting data from ONA Link.

Following, the different process groups and NiFi dataflows for acquiring data using the

local approach can be seen.

D2.4 Full Prototype of Predictive Analytics Platform

Page 58 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Figure 40 - General NiFi dataflow for obtaining data from ONA Link Protocol.

Figure 41 - NiFi dataflow for the Kafka Group.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 59

Confidentiality: Public Distribution

Figure 42 - NiFi dataflow for the Ona Link Group.

Figure 43 - NiFi dataflow for the Cassandra Group.

Next, the NiFi processor code for getting machine status data using the ONA Link

protocol is shown.

import java.net.Socket
import java.io.FileWriter;
import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;
import java.sql.Timestamp;
import java.util.List;

import org.apache.nifi.processor.io.OutputStreamCallback
import org.apache.commons.io.IOUtils
import org.apache.commons.logging.Log;

D2.4 Full Prototype of Predictive Analytics Platform

Page 60 Version 1.0 15 February 2019

Confidentiality: Public Distribution

import org.apache.commons.logging.LogFactory;

class ClsSfrOnaLinkRMCPStatusRequestClient implements Processor {

 static SocketChannel GlbOnaRMSocketChannel = null;

 def REL_SUCCESS = new Relationship.Builder()
 .name('success')
 .description('The flow file with the answer received from socket will be
transferred to this relation')
 .build();

 def REL_FAILURE = new Relationship.Builder()
 .name('failure')
 .description('The flow file with the original request that failed will be
transferred to this relation')
 .build();

 def ONA_RM_HOSTNAME = new PropertyDescriptor.Builder()
 .name('Hostname').description('Host name or Ip address to be connected
to')

.required(true).expressionLanguageSupported(false).addValidator(Validator.VALID).buil
d()

 def ONA_RM_PORT = new PropertyDescriptor.Builder()
 .name('Port').description('Port number to be connected to')

.required(true).expressionLanguageSupported(false).addValidator(Validator.VALID).buil
d()

 def ONA_RMCP_MSG_STATUS_REQUEST = new PropertyDescriptor.Builder()
 .name('Status Request Message').description('ONA Link Protocol Message to
request State of machine')

.required(true).expressionLanguageSupported(false).addValidator(Validator.VALID).buil
d()

 static Log msgLog =
LogFactory.getLog(ClsSfrOnaLinkRMCPStatusRequestClient.class);

 @Override
 void initialize(ProcessorInitializationContext context) {}

 @Override
 Set<Relationship> getRelationships() { return [REL_SUCCESS, REL_FAILURE] as Set }

 @Override
 void onTrigger(ProcessContext context, ProcessSessionFactory sessionFactory)
throws ProcessException {

 // Create session and flow file
 def session = sessionFactory.createSession();
 def flowFile = session.create();

 // Variables to store the content to added to the flowfile
 // and to know the relation to which the flowFile has to be sent.
 String flowFileContent = '';
 boolean success = true;

 // Extract paramaters
 String onaRMHostname = '???';
 String onaRMPort = '???';

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 61

Confidentiality: Public Distribution

 String onaRMCPStatusRequestMessage = '???';

 // Try to catch var data
 try {

 long timeStart;
 long timeEnd;

 // ---
 // Get parameters
 // ---

 onaRMHostname = context.getProperty(ONA_RM_HOSTNAME)?.getValue();
 onaRMPort = context.getProperty(ONA_RM_PORT)?.getValue();
 onaRMCPStatusRequestMessage =
context.getProperty(ONA_RMCP_MSG_STATUS_REQUEST)?.getValue();

 // Check no empty values
 if (onaRMHostname == '') {
 throw new Exception("Cannot Start Processor: Hostname not specified.");
 };
 if (onaRMPort == '') {
 throw new Exception("Cannot Start Processor: Port not specified.");
 };
 if (onaRMCPStatusRequestMessage == '') {
 throw new Exception("Cannot Start Processor: Status Request message not
specified.");
 };

 // Check onaRMPort is a number
 if (!onaRMPort.isInteger()) {
 throw new Exception("Cannot Start Processor: Port is not a positive
Integer.");
 };

 // ---
 // Socket connection
 // ---

 // If SocketChanel not created or is not connected
 if (GlbOnaRMSocketChannel == null || !GlbOnaRMSocketChannel.isConnected()) {

 // Create the socket channel if needed
 if (GlbOnaRMSocketChannel == null) {
 GlbOnaRMSocketChannel = SocketChannel.open();
 GlbOnaRMSocketChannel.configureBlocking(false);
 }

 // Try connect
 msgLog.info('SocketChannel connecting ...');
 GlbOnaRMSocketChannel.connect(new InetSocketAddress(onaRMHostname,
onaRMPort.toInteger()));

 // Wait at most 5000 ms for connection
 timeStart = System.currentTimeMillis();
 while (!GlbOnaRMSocketChannel.finishConnect()) {
 timeEnd = System.currentTimeMillis();
 if ((timeEnd - timeStart) > 5000) {
 throw new Exception("SocketChannel Connection timeout.");
 }
 }

D2.4 Full Prototype of Predictive Analytics Platform

Page 62 Version 1.0 15 February 2019

Confidentiality: Public Distribution

 msgLog.info('SocketChannel connected.');
 }

 // ---
 // Status request
 // ---

 CharBuffer bufferSendStatusRequest;
 ByteBuffer bufferReceiveStatusRequest;

 // Write status request into channel.
 // Add \r\n to the message request as required by ONA Protocol
 bufferSendStatusRequest = CharBuffer.wrap(onaRMCPStatusRequestMessage +
"\r\n");
 while (bufferSendStatusRequest.hasRemaining()) {

GlbOnaRMSocketChannel.write(Charset.defaultCharset().encode(bufferSendStatusRequest))
;
 }
 msgLog.info('ONA RMCP Status Request sent to server: ' +
onaRMCPStatusRequestMessage);

 // Loop until a response is received or timeout
 bufferReceiveStatusRequest = ByteBuffer.allocate(1024);
 timeStart = System.currentTimeMillis();
 while (true) {

 // See if any message has been received
 while (GlbOnaRMSocketChannel.read(bufferReceiveStatusRequest) > 0) {
 bufferReceiveStatusRequest.flip();
 flowFileContent +=
Charset.defaultCharset().decode(bufferReceiveStatusRequest);
 }

 // If message received assign a time stamp
 if (flowFileContent.length() > 0) {
 break;
 }

 // Wait at most 5000 ms for answer
 timeEnd = System.currentTimeMillis();
 if ((timeEnd - timeStart) > 5000) {
 throw new Exception("ONA RMCP Status Request timeout.");
 }
 }
 msgLog.info('ONA RMCP Status Request answer received from server: ' +
flowFileContent);

 // ---
 // Catch the exception
 // ---
 } catch(e) {
 msgLog.info("ClsSfrOnaLinkRMCPStatusRequestClient Exception: " +
e.getMessage());
 flowFileContent = "ClsSfrOnaLinkRMCPStatusRequestClient Exception: " +
e.getMessage()
 success = false
 }

 // ---
 // Transfer

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 63

Confidentiality: Public Distribution

 // ---

 // Update the name of the flowFile with the timeStamp
 flowFile = session.putAttribute(flowFile, 'filename', "ONALinkLogData" + "_"
+ onaRMHostname + "_" + onaRMPort + "_" +
String.valueOf(System.currentTimeMillis()));

 // Add content of the answer message to the flow file
 flowFile = session.write(flowFile, { outStream ->
outStream.write(flowFileContent.getBytes("UTF-8"))} as OutputStreamCallback);

 // Uoadte content of flowFile
 if (success) {
 msgLog.info('SUCCESS: FlowFile Content: ' + flowFileContent);
 session.transfer(flowFile, REL_SUCCESS);
 } else {
 msgLog.info('FAILURE: FlowFile Content: ' + flowFileContent);
 session.transfer(flowFile, REL_FAILURE);
 }

 // Commit the transaction
 session.commit();
 }

 @Override
 Collection<ValidationResult> validate(ValidationContext context) { return null }

 @Override
 PropertyDescriptor getPropertyDescriptor(String name) {
 switch(name) {
 case 'Hostname': return ONA_RM_HOSTNAME
 case 'Port': return ONA_RM_PORT
 case 'Status Request Message': return ONA_RMCP_MSG_STATUS_REQUEST
 default: return null
 }
 }

 @Override
 void onPropertyModified(PropertyDescriptor descriptor, String oldValue, String
newValue) { }

 @Override
 List<PropertyDescriptor> getPropertyDescriptors() { return [ONA_RM_HOSTNAME,
ONA_RM_PORT, ONA_RMCP_MSG_STATUS_REQUEST] as List }

 @Override
 String getIdentifier() { return 'ClsSfrOnaLinkRMCPStatusRequestClient-
InvokeScriptedProcessor' }

}

processor = new ClsSfrOnaLinkRMCPStatusRequestClient()

Code 4. Groovy Script for getting Status data from ONA machines

Finally, the NiFi processor code for obtaining machine variable data using the ONA

Link protocol is shown.

D2.4 Full Prototype of Predictive Analytics Platform

Page 64 Version 1.0 15 February 2019

Confidentiality: Public Distribution

import java.net.Socket
import java.io.FileWriter;
import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;
import java.sql.Timestamp;
import java.util.List;

import org.apache.nifi.processor.io.OutputStreamCallback
import org.apache.commons.io.IOUtils
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

class ClsSfrOnaLinkRMCPStatusRequestClient implements Processor {

 static SocketChannel GlbOnaRMSocketChannel = null;

 def REL_SUCCESS = new Relationship.Builder()
 .name('success')
 .description('The flow file with the answer received from socket will be
transferred to this relation')
 .build();

 def REL_FAILURE = new Relationship.Builder()
 .name('failure')
 .description('The flow file with the original request that failed will be
transferred to this relation')
 .build();

 def ONA_RM_HOSTNAME = new PropertyDescriptor.Builder()
 .name('Hostname').description('Host name or Ip address to be connected
to')

.required(true).expressionLanguageSupported(false).addValidator(Validator.VALID).buil
d()

 def ONA_RM_PORT = new PropertyDescriptor.Builder()
 .name('Port').description('Port number to be connected to')

.required(true).expressionLanguageSupported(false).addValidator(Validator.VALID).buil
d()

 def ONA_RMCP_MSG_STATUS_REQUEST = new PropertyDescriptor.Builder()
 .name('Status Request Message').description('ONA Link Protocol Message to
request State of machine')

.required(true).expressionLanguageSupported(false).addValidator(Validator.VALID).buil
d()

 static Log msgLog =
LogFactory.getLog(ClsSfrOnaLinkRMCPStatusRequestClient.class);

 @Override
 void initialize(ProcessorInitializationContext context) {}

 @Override
 Set<Relationship> getRelationships() { return [REL_SUCCESS, REL_FAILURE] as Set }

 @Override

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 65

Confidentiality: Public Distribution

 void onTrigger(ProcessContext context, ProcessSessionFactory sessionFactory)
throws ProcessException {

 // Create session and flow file
 def session = sessionFactory.createSession();
 def flowFile = session.create();

 // Variables to store the content to added to the flowfile
 // and to know the relation to which the flowFile has to be sent.
 String flowFileContent = '';
 boolean success = true;

 // Extract paramaters
 String onaRMHostname = '???';
 String onaRMPort = '???';
 String onaRMCPStatusRequestMessage = '???';

 // Try to catch var data
 try {

 long timeStart;
 long timeEnd;

 // ---
 // Get parameters
 // ---

 onaRMHostname = context.getProperty(ONA_RM_HOSTNAME)?.getValue();
 onaRMPort = context.getProperty(ONA_RM_PORT)?.getValue();
 onaRMCPStatusRequestMessage =
context.getProperty(ONA_RMCP_MSG_STATUS_REQUEST)?.getValue();

 // Check no empty values
 if (onaRMHostname == '') {
 throw new Exception("Cannot Start Processor: Hostname not specified.");
 };
 if (onaRMPort == '') {
 throw new Exception("Cannot Start Processor: Port not specified.");
 };
 if (onaRMCPStatusRequestMessage == '') {
 throw new Exception("Cannot Start Processor: Status Request message not
specified.");
 };

 // Check onaRMPort is a number
 if (!onaRMPort.isInteger()) {
 throw new Exception("Cannot Start Processor: Port is not a positive
Integer.");
 };

 // ---
 // Socket connection
 // ---

 // If SocketChanel not created or is not connected
 if (GlbOnaRMSocketChannel == null || !GlbOnaRMSocketChannel.isConnected()) {

 // Create the socket channel if needed
 if (GlbOnaRMSocketChannel == null) {
 GlbOnaRMSocketChannel = SocketChannel.open();
 GlbOnaRMSocketChannel.configureBlocking(false);

D2.4 Full Prototype of Predictive Analytics Platform

Page 66 Version 1.0 15 February 2019

Confidentiality: Public Distribution

 }

 // Try connect
 msgLog.info('SocketChannel connecting ...');
 GlbOnaRMSocketChannel.connect(new InetSocketAddress(onaRMHostname,
onaRMPort.toInteger()));

 // Wait at most 5000 ms for connection
 timeStart = System.currentTimeMillis();
 while (!GlbOnaRMSocketChannel.finishConnect()) {
 timeEnd = System.currentTimeMillis();
 if ((timeEnd - timeStart) > 5000) {
 throw new Exception("SocketChannel Connection timeout.");
 }
 }
 msgLog.info('SocketChannel connected.');
 }

 // ---
 // Status request
 // ---

 CharBuffer bufferSendStatusRequest;
 ByteBuffer bufferReceiveStatusRequest;

 // Write status request into channel.
 // Add \r\n to the message request as required by ONA Protocol
 bufferSendStatusRequest = CharBuffer.wrap(onaRMCPStatusRequestMessage +
"\r\n");
 while (bufferSendStatusRequest.hasRemaining()) {

GlbOnaRMSocketChannel.write(Charset.defaultCharset().encode(bufferSendStatusRequest))
;
 }
 msgLog.info('ONA RMCP Status Request sent to server: ' +
onaRMCPStatusRequestMessage);

 // Loop until a response is received or timeout
 bufferReceiveStatusRequest = ByteBuffer.allocate(1024);
 timeStart = System.currentTimeMillis();
 while (true) {

 // See if any message has been received
 while (GlbOnaRMSocketChannel.read(bufferReceiveStatusRequest) > 0) {
 bufferReceiveStatusRequest.flip();
 flowFileContent +=
Charset.defaultCharset().decode(bufferReceiveStatusRequest);
 }

 // If message received assign a time stamp
 if (flowFileContent.length() > 0) {
 break;
 }

 // Wait at most 5000 ms for answer
 timeEnd = System.currentTimeMillis();
 if ((timeEnd - timeStart) > 5000) {
 throw new Exception("ONA RMCP Status Request timeout.");
 }
 }
 msgLog.info('ONA RMCP Status Request answer received from server: ' +
flowFileContent);

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 67

Confidentiality: Public Distribution

 // ---
 // Catch the exception
 // ---
 } catch(e) {
 msgLog.info("ClsSfrOnaLinkRMCPStatusRequestClient Exception: " +
e.getMessage());
 flowFileContent = "ClsSfrOnaLinkRMCPStatusRequestClient Exception: " +
e.getMessage()
 success = false
 }

 // ---
 // Transfer
 // ---

 // Update the name of the flowFile with the timeStamp
 flowFile = session.putAttribute(flowFile, 'filename', "ONALinkLogData" + "_"
+ onaRMHostname + "_" + onaRMPort + "_" +
String.valueOf(System.currentTimeMillis()));

 // Add content of the answer message to the flow file
 flowFile = session.write(flowFile, { outStream ->
outStream.write(flowFileContent.getBytes("UTF-8"))} as OutputStreamCallback);

 // Uoadte content of flowFile
 if (success) {
 msgLog.info('SUCCESS: FlowFile Content: ' + flowFileContent);
 session.transfer(flowFile, REL_SUCCESS);
 } else {
 msgLog.info('FAILURE: FlowFile Content: ' + flowFileContent);
 session.transfer(flowFile, REL_FAILURE);
 }

 // Commit the transaction
 session.commit();
 }

 @Override
 Collection<ValidationResult> validate(ValidationContext context) { return null }

 @Override
 PropertyDescriptor getPropertyDescriptor(String name) {
 switch(name) {
 case 'Hostname': return ONA_RM_HOSTNAME
 case 'Port': return ONA_RM_PORT
 case 'Status Request Message': return ONA_RMCP_MSG_STATUS_REQUEST
 default: return null
 }
 }

 @Override
 void onPropertyModified(PropertyDescriptor descriptor, String oldValue, String
newValue) { }

 @Override
 List<PropertyDescriptor> getPropertyDescriptors() { return [ONA_RM_HOSTNAME,
ONA_RM_PORT, ONA_RMCP_MSG_STATUS_REQUEST] as List }

 @Override
 String getIdentifier() { return 'ClsSfrOnaLinkRMCPStatusRequestClient-
InvokeScriptedProcessor' }

D2.4 Full Prototype of Predictive Analytics Platform

Page 68 Version 1.0 15 February 2019

Confidentiality: Public Distribution

}

processor = new ClsSfrOnaLinkRMCPStatusRequestClient()

Code 5. Groovy Script for getting Status data from ONA machines.

9.1.3 Electrolux

This section displays the NiFi dataflow used in the final prototype to ingest data from

Electrolux induction hobs and Matlab(c). The NiFi dataflow can be overviewed in

Figure 44.

Figure 44 - NiFi dataflow for getting data from MQTT.

9.2 ESPER RULES

Event Type Rule

semRojo Event semRojoFlag1 <> 0 OR semRojoFlag2 <>

0 OR semRojoFlag3 <> 0 OR

semRojoFlag4 <> 0

semAmbar Event semRojo = 0 AND (semAmbarFlag1 <> 0

OR semAmbarFlag2 <> 0 OR

semAmbarFlag3 <> 0 OR

semAmbarFlag4 <> 0)

semGris Event semRojo = 0 AND semAmbar = 0 AND

(semGrisVerdeCond1 <> 1 OR

semGrisCond2 <> 0 OR semGrisCond3

<> 0)

semVerde Event semRojo = 0 AND semAmbar = 0 AND

semGris = 0 AND (semGrisVerdeCond1

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 69

Confidentiality: Public Distribution

<> 0 semVerdeCond2 <> 0)

Thickness Event IF thickness is NULL THEN 20 ELSE

thickness

MMR Event wireSpeed /thickness

spoolWireRemainingTime Event wireLength / wireSpeed

codState Event semRojo * 1 + semAmbar * 2 + semGris *

3 + semVerde *4

State Event IF codState = 1 THEN Idle

IF codState = 2 THEN Alarm-Yellow

IF codState = 3 THEN Warning-Red

IF codState = 4 THEN Running-Green

ELSE Error

instantConsumption Event IF codState = 4 THEN wireSpeed /

wireDiameter

WconductivityInf Warning IF codState = 4 THEN(

IF conductivity <= 11 THEN 1

ELSE 0

)

ELSE 0

WconductivitySup Warning IF codState = 4 THEN(

IF spoolRemainingWirePercent >=

15 THEN 1

ELSE 0

)

ELSE 0

WspoolRemainingWirePercent Warning IF codState = 4 THEN(

IF conductivity <= 10 THEN 1

ELSE 0

)

ELSE 0

Wtemperature_01Hour Warning (MAX(ambientTemperature) –

MIN(ambientTemperature) INTERVAL 1

HOUR) > 2

Wtemperature_24Hour Warning (MAX(ambientTemperature) –

MIN(ambientTemperature) INTERVAL 1

DAY) > 4

WmachineRunning Warning codState <> 4

9.3 PREDICTIVE ANALYTICS TEMPLATES

In this section, the Source Code templates used to (a) Define and Train Predictive

Models, (b) Develop Predictive Analytics Prediction REST Web Service Clients and (c)

Access Predictive Analytics by Sending Messages to MQTT, NiFi and Kafka are given.

D2.4 Full Prototype of Predictive Analytics Platform

Page 70 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Part of this material has been specified in SAFIRE D2.5 full prototype specifications

deliverable but is included here again for clarity. The source code templates and the

examples allow non-expert users to define and train medium complexity models.

9.3.1 Templates to Define and Train Predictive Models

9.3.1.1 Templates for Spark

Python source code below shows a simple spark template of a Logistic Regression (this

function is part of several source code files used for ONA Electroerosion test case).

def trainModelLR(dataFrame, dataFrameFeatureColNames):

Assemble the input to produce the features column

assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features")

 # TODO

 # Select the machine learning algorithm and its parameters

 # In this case a Logistic Regression has been selected

 lr = LogisticRegression(maxIter = 100, regParam = 0.01)

 # Chain in a pipeline the transformations

 # and machine learning algorithm

 pipeline = Pipeline(stages = [assembler, lr])

 # TODO

 # Create a Parameter Grid for Cross Validation

 # Assign a range to the hyper parameter for fine-tuning

 paramGrid = (ParamGridBuilder()

 .addGrid(lr.regParam, [0.01, 0.1, 0.3, 0.5])

 .addGrid(lr.maxIter, [10,25, 50, 100])

 .addGrid(lr.elasticNetParam, [0.0, 0.1, 0.2])

 .build())

 # Define cross validation model

 crossval = CrossValidator(estimator=pipeline,

 estimatorParamMaps=paramGrid,

 evaluator=BinaryClassificationEvaluator(),

 numFolds=5)

 # Fit (train) the model

 model = crossval.fit(dataFrame)

 # Return the model bestModel

 return model

Python source code below shows a simple spark template of a Decision Tree algorithm

(this function is part of several source code files). Following Spark’s philosophy, it is

very easy to interchange the algorithms to use to experiment with different alternatives.

The code of the logistic regression and the decision tree is very similar.

def trainModelDT(dataFrame, dataFrameFeatureColNames):

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 71

Confidentiality: Public Distribution

 # Assemble the input to produce the features column

 assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features")

 # TODO

 # Select the machine learning algorithm and its parameters

 # In this case a Decision Tree Classifier has been selected

 dt = DecisionTreeClassifier()

 # Chain in a pipeline the transformations

 # and machine learning algorithm

 pipeline = Pipeline(stages = [assembler, dt])

 # TODO

 # Create a Parameter Grid for Cross Validation

 # Assign a range to the hyper parameter for fine-tuning

 paramGrid = (ParamGridBuilder()

 .addGrid(dt.maxDepth, [5, 10, 15, 20])

 .addGrid(dt.maxBins, [5, 10, 20, 40])

 .build())

 # Define cross validation model

 crossval = CrossValidator(estimator=pipeline,

 estimatorParamMaps=paramGrid,

 evaluator=BinaryClassificationEvaluator(),

 numFolds=5)

 # Fit (train) the model

 model = crossval.fit(dataFrame)

 # Return the trained model

 return model

Python source code below shows a simple spark template of a Random Forest Tree

algorithm (this function is part of several source code files).

def trainModelRF(dataFrame, dataFrameFeatureColNames):

Assemble the input to produce the features column

 assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features")

 # TODO

 # Select the machine learning algorithm and its parameters

 # In this case a Random Forest Tree Classifier has been selected

 rf = RandomForestClassifier(labelCol="label",featuresCol="features")

 # Chain in a pipeline the transformations and machine learning algorithm

 pipeline = Pipeline(stages = [assembler, rf])

TODO

Create a Parameter Grid for Cross Validation

Assign a range to the hyper parameter for fine-tuning

 paramGrid = ParamGridBuilder()\

 .addGrid(rf.maxDepth, [2,4,10])\

 .addGrid(rf.numTrees, [10, 50, 100])\

 .build()

Define cross validation model

 crossval = CrossValidator(estimator=pipeline,

D2.4 Full Prototype of Predictive Analytics Platform

Page 72 Version 1.0 15 February 2019

Confidentiality: Public Distribution

 estimatorParamMaps=paramGrid,

 evaluator=MulticlassClassificationEvaluator(),

 numFolds=5)

Fit (train) the model

 model = crossval.fit(dataFrame)

 # Return the trained model

 return model

Python source code below shows a simple spark template of a OneVsRest algorithm

(this function is part of several source code files).

def trainModelOneVsRest(dataFrame, dataFrameFeatureColNames):

Assemble the input to produce the features column

assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features")

TODO

 # Select the machine learning algorithm and its parameters

 # In this case a Random Forest Tree Classifier has been selected

lr = LogisticRegression(maxIter = 100,

regParam = 0.01,

elasticNetParam = 0.8,

tol=1E-6, fitIntercept=True)

ovr = OneVsRest(classifier=lr)

Chain in a pipeline the transformations and machine learning algorithm

pipeline = Pipeline(stages = [assembler, ovr])

TODO

Create a Parameter Grid for Cross Validation

Assign a range to the hyper parameter for fine-tuning

 paramGrid = (ParamGridBuilder()

 .addGrid(lr.regParam, [0.01, 0.1, 0.3, 0.5])

 .addGrid(lr.maxIter, [10, 25, 100, 500])

 .addGrid(lr.elasticNetParam, [0.0, 0.1, 0.2, 0.8])

 .build())

Define cross validation model

 crossval = CrossValidator(estimator=pipeline,

 estimatorParamMaps=paramGrid,

 evaluator=MulticlassClassificationEvaluator(),

 numFolds=5)

Fit (train) the model

 model = crossval.fit(dataFrame)

 # Return the trained model

 return model

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 73

Confidentiality: Public Distribution

9.3.1.2 Templates for Keras

Python source code below shows a simple template for Keras to define and fit a Neural

Network (this function is part of several source code files used for Electrolux test case).

Define a Neural Network

def model(input_shape):

 '''

 Function creating the model's graph in Keras

 Argument: input_shape -- shape of the model's input data (using Keras conventions)

 Returns: model -- Keras model instance

 '''

 # Define input shape

 X_input = Input(shape = input_shape)

Define first dense (fully connected) layer with 100 neurons and 'relu' activation

X = Dense(100, input_dim=cnst.Tx, kernel_initializer='normal', activation='relu')(X_input)

Define hidden dense (fully connected) layers

X = Dense(30, kernel_initializer='normal', activation='relu')(X)

X = Dense(10, kernel_initializer='normal', activation='relu')(X)

Define output layer with 'sigmoid' activation for binary classification

X = Dense(1, kernel_initializer='normal', activation='sigmoid')(X)

Finally build a return the model

model = Model(inputs = X_input, outputs = X)

return model

Compile and train the model

Define the model invoking previous model

modelCurF08 = model(input_shape = [100])

Compile the model for binary classification and adam training algorithm

modelCurF08.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Fit the model

modelCurF09.fit(X_trainCurF08, Y_trainCurF08, batch_size = 50, epochs = 500, shuffle=True,

class_weight = class_weightCurF08, validation_data=[X_devCurF08, Y_devCurF08])

9.3.2 Templates to Develop Predictive Analytics REST Web Service and Clients

This section (already included in D2.5 deliverable and reproduced here for clarity)

shows the templates to develop Predictive Analytics REST Web Services and clients

implemented in full prototype.

Service Specifications

D2.4 Full Prototype of Predictive Analytics Platform

Page 74 Version 1.0 15 February 2019

Confidentiality: Public Distribution

This section specifies the input parameters of the service and the specification of the

answer returned by service.

Service name

 String SafirePrdAnalyticsPredictor

Parameters in the Request

 String ipAddress – Identifies the ip address where the service is located.

 String port – Connection port to the service.

 long clientId – Identifies the client’s request. Can be any number provided

by the client. This identification will be included back with the answer.

 String clientTopic – Client topic is a string provided by the client. It is

simply a complement to the client’s request and might be the empty string.

This topic will be included back with the answer and can help the client to

indentify better the answer. An example of client’s topic may be

“Boil_detection_25-Oct-2018_16-51-00” that identifies a boiling experiment.

 String modelName – Upon request, the service will (a) invoke and load a

previously trained predictive analytics model and (b) will call the model to

predict values according to dataFrameRowDataJSON parameter (see below).

 String backendName – Indicates the backend that will process the

invocation. Allowed values are: spark or keras

 String dataFrameColNamesJSON – Contains the dataframe column names in

JSON format, according to the following syntax:

{"dataFrameColNames":["name1","name2",....]}

Example (three columns case):

{"dataFrameColNames":["id","text","label"]}

 String dataFrameColTypesJSON – Contains the dataframe column types in

JSON format. Allowed types are integer, double, string, arrayInteger,

arrayDouble. Syntax is as follows:

{"dataFrameColTypes":["type1","type2", ...]}

Example (three columns case):

{"dataFrameColTypes":["integer","string","double"]}

 String dataFrameRowDataJSON – Contains the dataframe rows in JSON

format. Each row must have the number of values specified in

dataFrameColNamesJSON with its corresponding type specified in

dataFrameColTypesJSON. Syntax is as follows:

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 75

Confidentiality: Public Distribution

{"dataFrameRowData":
[[row1data1, row1data2, ...],
[row2data1, row2data2, ...],
[row3data1, row3data2, ...],

...
]}

Example 1 (two rows with three columns of type integer, string, double):

{"dataFrameColNames":["id","text","label"]}
{"dataFrameColTypes":["integer","string","double"]}
{"dataFrameRowData":

[[7,"this is an example ssd", 1.0],
 [8,”another text”, 0.0]]}

Example 2 (two rows with one column of type arrayDouble):

{"dataFrameColNames":["currentValues"]}
{"dataFrameColTypes":["arrayDouble"]}
{"dataFrameRowData":

[[[1.456, 2.3456, 3.2345, 1.3456]],
[[2.3737, 4.2829, 1.2876, 8.7625]]}

Answer given by the service

The service will always return a JSON string containing the following fields:

 long callCount - Represents an automatic counter with the number of times

the service has been requested since it was started (just informative purpose).

 long clientId- The client identification that was provided by the client in

the request.

 long clientTopic - The client topic that was provided by the client in the

request.

 String modelName – The predictive model that was provided by the client in

the request.

 String backendName – The backend that was provided by the client in the

request.

 String dataFrameRowDataPredictionJSON – In this parameter, the service

returns in this parameter the predicted values for each row received in the

request’s param dataFrameRowDataJSON. The syntax of the JSON string

(similar to that of dataFrameRowDataJSON) is the following:

{"dataFrameRowDataPrediction":
[[Row1Prediction1, Row1Prediction2, ...],
 [Row2Prediction1, Row2Prediction2, ...],
 [Row3Prediction1, Row3Prediction2, ...],

...
]}

D2.4 Full Prototype of Predictive Analytics Platform

Page 76 Version 1.0 15 February 2019

Confidentiality: Public Distribution

Example: (predicted values for three rows, where each predicted value is a

double):

{"dataFrameRowDataPrediction":

[[0.9878],
 [0.45627],
 [0.87265]
]}

Note: The number of predicted values per row and their types is implicitly

defined in the predictive model, but not defined in the request. Therefore, the

client receiving the answer must know the expected number and types of

fields.

 String errorDescription – The description of the error when the service

execution fails (retCode <> 0).

 int retCode – Return code value is 0 when the service execution succeed,

and non-zero otherwise.

Example of Request

The client sends a request as follows (Electrolux case example):

http://localhost:8080/SafirePrdAnalyticsPredictor?
clientId=1&
clientTopic=Boil_detection_26-10-2018_10-57-41&
modelName=electroluxNNTraineModelCurF08.h5&
backendName=keras&
dataFrameColNamesJSON=

{"dataFrameColNames":["currentValues"]}&
dataFrameColTypesJSON=

{"dataFrameColTypes":["arrayDouble"]}&
dataFrameRowDataJSON=

{"dataFrameRowData":[[[1.54418102, 1.48782741, ...]]]}

Example of Answer

The service processes the request and answers with the following:

ClsSafirePrdAnalyticsPredictorWebServiceAnswer {
callCount=1,
clientId=1,
clientTopic= Boil_detection_26-10-2018_10-57-41,
modelName=electroluxNNTraineModelCurF08.h5,
backendName=keras,
prediction={"dataFrameRowDataPrediction":[[0.9015398025512695]]},
errorDescription=””,
retCode=0}

In this particular case, the answer contains the prediction of the single sample passed as

parameter being boiling (90,15%).

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 77

Confidentiality: Public Distribution

Invoking the Prediction Service from a Web Navigator

The Prediction Service is also callable from a Web navigator. Error! Reference source

ot found.Figure below shows a call to the service executed from a web navigator (in

this case Google Chrome) and the response given by the service.

Template for invocation from a Java Client Specifications

Source Code below represents templates for an easy development of REST Java clients.

The template is composed by the two classes described below.

Class ClsSafirePrdAnalyticsPredictorWebServiceAnswer

This class represents a Java client. Only the section with TODO must be modified by the

end-user using the template. The SAFIRE Predictive analytics REST Web Service

client for Electrolux test case in the full prototype has been developed with this

template.

@SpringBootApplication

public class ClsSafireWebServiceRestClientTemplate {

 private static final Logger log =

LoggerFactory.getLogger(ClsSafireWebServiceRestClientTemplate .class);

 public static void main(String args[]) {

 SpringApplication.run

(ClsSafireWebServiceRestClientTemplate .class);

 }

 @Bean

 public RestTemplate restTemplate(RestTemplateBuilder builder) {

 return builder.build();

 }

 @Bean

 public CommandLineRunner run(RestTemplate restTemplate) throws Exception {

 return args -> {

 // Call service

 CallService(restTemplate);

 };

 }

 private void CallService(RestTemplate restTemplate) {

 // TODO

D2.4 Full Prototype of Predictive Analytics Platform

Page 78 Version 1.0 15 February 2019

Confidentiality: Public Distribution

 // Define call parameters

 String port = "8080";

 long clientId = 1;

 String topic = "Boil_detection_29-oct-2018_12-08-00";

 String modelName = "electroluxNNTraineModelCurF08.h5";

 String backendName = "keras";

 // TODO

 // Generate the sample to predict

 // The key dataframe elements must be defined

 // The columns names, types and data values

 // Row Data is a list of data rows. The service will answer with

 // a prediction for each row.

 String dataFrameColNamesJSON =

 "{\"dataFrameColNames\":[\"currentValues\"]}";

 String dataFrameColTypesJSON =

 "{\"dataFrameColTypes\":[\"arrayDouble\"]}";

 String dataFrameRowDataJSON =

 "{\"dataFrameRowData\":"

 + "[[[1.456, 2.3456, 3.2345, 1.3456]],"

 + "[[2.3737, 4.2829, 1.2876, 8.7625]]}";

 // Encode the data frame elements

 // This is necessary as they contain reserved chars for http requests

 dataFrameColNamesJSON =

UriUtils.encodeQueryParam(dataFrameColNamesJSON,"UTF-8");

 dataFrameColTypesJSON =

UriUtils.encodeQueryParam(dataFrameColTypesJSON,"UTF-8");

 dataFrameRowDataJSON =

UriUtils.encodeQueryParam(dataFrameRowDataJSON,"UTF-8");

 // Build the call to the prediction service

 String serviceCall =

 "http://localhost:" + port + "/SafirePrdAnalyticsPredictor?" +

 "clientId=" + String.valueOf(clientId) + "&" +

 "clientTopic=" + topic + "&" +

 "modelName=" + modelName + "&" +

 "backendName=" + backendName + "&" +

"dataFrameColNamesJSON=" + dataFrameColNamesJSON + "&" +

"dataFrameColTypesJSON=" + dataFrameColTypesJSON + "&" +

 "dataFrameRowDataJSON=" + dataFrameRowDataJSON;

 // Call the prediction service

 // In this case the call is synchronous so the caller will be

 // blocked here waiting for the answer.

 ClsSafirePrdAnalyticsPredictorWebServiceAnswer answer =

restTemplate.getForObject

(serviceCall,

ClsSafirePrdAnalyticsPredictorWebServiceAnswer.class);

 // TODO

 // Process the answer

 // In this template just print to log

 log.info(answer.toString());

 }

}

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 79

Confidentiality: Public Distribution

Class ClsSafirePrdAnalyticsPredictorWebServiceAnswer

This class represents the answer given by the prediction service and does not need any

modifications, and can be used as-is:

@JsonIgnoreProperties(ignoreUnknown = true)

public class ClsSafirePrdAnalyticsPredictorWebServiceAnswer {

 // Represents an automatic counter

 // with the number of times the

 // service has been requested

 private long callCount;

 // Id value passed by the caller

 // Will be returned back as it is

 private long clientId;

 // Topic value passed by the caller

 // Will be returned back as it is

 private String clientTopic;

 // Prediction Model name

 // requested by the caller

 private String modelName;

 // Prediction engine backend

 // requested by the caller

 // Allowed values are: spark, keras

 private String backendName;

 // List of Predicted Data Frame Rows values

 // Contains a JSON list with the Predictied Rows

 // produced by the model. It is responsible

 // of the caller to interprete the meaning of

 // the values

 private String dataFrameRowDataPredictionJSON;

 // Error description

 // when retCode != 0

 private String errorDescription;

 // 0-Success, <>0-Error

 private int retCode;

 public ClsSafirePrdAnalyticsPredictorWebServiceAnswer() {

 }

 public long getCallCount() {

 return callCount;

 }

 public void setCallCount(long callCount) {

 this.callCount = callCount;

 }

 public long getClientId() {

D2.4 Full Prototype of Predictive Analytics Platform

Page 80 Version 1.0 15 February 2019

Confidentiality: Public Distribution

 return clientId;

 }

 public void setClientId(long clientId) {

 this.clientId = clientId;

 }

 public String getClientTopic() {

 return clientTopic;

 }

 public void setClientTopic(String clientTopic) {

 this.clientTopic = clientTopic;

 }

 public String getModelName() {

 return modelName;

 }

 public void setModelName(String modelName) {

 this.modelName = modelName;

 }

 public String getBackendName() {

 return backendName;

 }

 public void setBackendName(String backendName) {

 this.backendName = backendName;

 }

 public String getDataFrameRowDataPredictionJSON() {

 return dataFrameRowDataPredictionJSON;

 }

 public void setDataFrameRowDataPredictionJSON(String dataFrameRowDataPredictionJSON) {

 this.dataFrameRowDataPredictionJSON = dataFrameRowDataPredictionJSON;

 }

 public String getErrorDescription() {

 return errorDescription;

 }

 public void setErrorDescription(String errorDescription) {

 this.errorDescription = errorDescription;

 }

 public int getRetCode() {

 return retCode;

 }

 public void setRetCode(int retCode) {

 this.retCode = retCode;

 }

 @Override

 public String toString() {

 return "ClsSafirePrdAnalyticsPredictorWebServiceAnswer {" +

 "callCount = " + Long.toString(callCount) +

 ", clientId = " + Long.toString(clientId) +

 ", clientTopic = " + clientTopic +

 ", modelName = " + modelName +

 ", backendName = " + backendName +

 ", prediction = " + dataFrameRowDataPredictionJSON +

 ", errorDescription = " + ((retCode != 0) ? errorDescription : "Ok") +

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 81

Confidentiality: Public Distribution

 ", retCode = " + Long.toString(retCode) +

 '}';

 }

}

Speed Specifications

The SAFIRE project aims at real-time processing and therefore Web Service execution

time must meet that requirement. However, real-time is a concept relative to the

application and the requirements can be different for each application.

For example, in the case of Electrolux boiling detection, real-time means basically the

order of one second. Execution speed depends obviously on the connection but also in

the predictive model complexity.

As a general requirement, for medium size models and good quality connection, real-

time requirement will be understood as execution time in the order of a few seconds.

9.3.3 JSON Message format to access Predictive Analytics Service via MQTT, NiFi,

Kafka.

The Predictive Analytics service is also accessible by sending messages to SAFIRE

cloud via MQTT, NiFi and KAFKA. A client can also send messages to SAFIRE cloud

requesting predictions and waiting for an answers from the cloud. Next two subsections

defined the format of the message to be sent and the answer received. Finally, third

subsection defines the meaning of the fields.

9.3.3.1 JSON Request Messsage format to be sent to SAFIRE Cloud by the client

Example of message for Electrolux test case representing the case of a hob requesting

prediction to check if the water is boiling. The hob sends one row of data with time,

energy, coil temp and currents. JSON field names are in green and values in blue.

{

 "serviceName" : "SafirePrdAnalyticsPredictor",

 "timestamp" : "1517927276069",

 "clientId" : "hob_2341",

 "clientTopic” : "boil_detection",

 "modelName" : "electroluxBoilDetectionNNTraineModelCur.h5",

 "backendName" : "keras",

 "dataFrameColNames" :

["Time [s]","Energy [kJ]","T_Coil [C]","Cur_F01 [A]","Cur_F02 [A]","Cur_F03

[A]","Cur_F04 [A]","Cur_F05 [A]","Cur_F06 [A]","Cur_F07 [A]","Cur_F08 [A]","Cur_F09

[A]","Cur_F10 [A]","Cur_F11 [A]","Cur_F12 [A]","Cur_F13 [A]"],

 "dataFrameColTypes" :

["integer","double","double","double","double","double","double","double","double","doubl

e","double","double","double","double","double","double"],

D2.4 Full Prototype of Predictive Analytics Platform

Page 82 Version 1.0 15 February 2019

Confidentiality: Public Distribution

 "dataFrameRowData" :

[["0.043058454","453.1684169","116.0166168","64.86247126","61.84273338","58.6668516

8","54.45028941","50.73850822","46.71570587","44.01422437","40.96934446","38.679957

71","37.23618762","30.55048904","25.67852052","21.31361008"]]

}

9.3.3.2 JSON Answer Messsage format received by the client from SAFIRE Cloud

Example of message for Electrolux test case representing the answer of the predictive

service to the request shown in previous section, in this case telling that the probability

of water being boiling is 0.98.

{

 "serviceName" : "SafirePrdAnalyticsPredictor",

 "timestamp" : "1517927276069",

 "clientId" : "hob_2341",

 "clientTopic” : "boil_detection",

 "dataFrameRowDataPrediction" : [["0.98"]],

“errorDescription” : “”

“rectCode”: “0”

}

9.3.3.3 Explanation of Fields

This section explains the meaning of fields in request and answer messages.

 "serviceName". Same value sent in Request is received in Answer. Always must

be set to "SafirePrdAnalyticsPredictor" as this is the name of the service.

 "timestamp". Same value sent in Request is received in Answer. It is

the value returned by function now() in the computer when the client requests

the service.

 "clientId". Same value sent in Request is received in Answer. An

identificator of the hob that is calling the service.

 "clientTopic”. Same value sent in Request is received in Answer. The

message will be sent to this topic.

 "modelName". Trained machine learning model to be invoked for prediction.

 "backendName". Machine learning module backend to be invoked, must be

keywords "spark" or “keras".

 "dataFrameColNames". List ([]) of data field names provided by the request.

 D2.4 Full Prototype of Predictive Analytics Platform

15 February 2019 Version 1.0 Page 83

Confidentiality: Public Distribution

 "dataFrameColTypes". List ([]) of data field types provided by the request. Must

be keywords "integer", "double", "string", "arrayDouble" or "arrayInteger".

 "dataFrameRowData". List of rows ([[]]) of data field values provided by the

request. Prediction service will answer with a list of predictions, one prediction

per row (a prediction may be composed by several values). In the example

above there is only one row, by several rows can be provided.

 "dataFrameRowDataPrediction". List of rows ([[]]) of predicted values. There is

one list of predicted values for each row. In the example above, as there is only

one row, only one list of predicted value is received. In this case that list

contains only one value that represents the probability of being boiling.

 "errorDescription". Description of the error returned by the service when no

prediction is returned (retCode <> 0).

 “retCode”. 0 if the service success and predicts, and <> 0 otherwise and no

prediction was produced.

