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D2.4 Full Prototype of Predictive Analytics Platform

EXECUTIVE SUMMARY

This document describes the Full Prototype of the software implementing the
functionality as specified in D2.2, demonstrating basic functionality of the Predictive
Analytics Platform. It includes a short description of the functionalities covered by the
early prototype and their integration into the SAFIRE infrastructure.
This deliverable is an evolution from D2.3 (Early Prototype of Predictive Analytics
Platform), including now the work performed to develop the full prototype. The main
additions are:

e Detailed description of work performed for the Business Cases.

e Full description of the used technologies.

e Description of Scalability and High Availability solutions.

e Requirements coverage table and statistics have been updated.

15 February 2019 Version 1.0 Page v
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D2.4 Full Prototype of Predictive Analytics Platform

1. INTRODUCTION

11 OVERVIEW
This document depicts the Full Prototype Analytics Platform based on:

= the first results from D1.1, Business Cases Requirements and Analysis,
= the results from D1.4, the SAFIRE Concept,

= the specification of Predictive Analytics Platform and

= the methodology for Predictive Analytics Platform

1.2 APPROACH APPLIED

For each of the main modules forming SAFIRE, a similar approach where a first step is
to analyse the requirements collected at Business Case requirements and analysis phase,
detail these and from there derive the data model, functional specification, external
interfaces, and technical specification.

The general approach followed to write the current document can be seen in Figure 1.

Visions Business Existing
Expertise Solutions
Application
Scenario
Requirement
Analysis (D1.1) SAFIRE Early Specification
| > concept I:> of Predictive
D1.4 Analytics Platform
Business Case (D2.2)

Infrastructure
Specification (D1.3)

Early Prototype of
| Predictive Analytics
Platform (D2.3)

|

Final Specification ] e

o Predictve > predict i
Predictive Anal
Analytics Platform redictive Analytics

(D2.5) Platform (D2.4)

Figure 1: Approach followed for Full Prototype of Predictive Analytics Platform
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D2.4 Full Prototype of Predictive Analytics Platform SAFIRE

1.3

DOCUMENT STRUCTURE
The document consists of:
= Section 1. Introduction, which describes the purpose of the document, and
provides a brief overview of its contents.

= Section 2. Description of the Full Prototype (FP) implementation of the Predictive
Analytics Platform.

= Section 3. Briefly describes the integration with other modules.

= Section 4. Short description on how to install and configure the Predictive
Analytics Platform.

= Section 5. Describes the specific customisation for the SAFIRE business cases.
= Section 6. Presents the Software tools used for implementation
= Section 7. Conclusions and wrap up of the deliverable

PREDICTIVE ANALYTICS PLATFORM

The Predictive Analytics Platform allows to the SAFIRE users to do advanced analytics
in real time, storing huge amounts of data and web visualization tools to easily query
and visualize the stored data. Moreover, the Predictive Analytics Platform offers
different web services for interacting with different modules. An architectural overview
of the envisioned platform can be seen on Figure 2.

The Data Ingestion module is capable of keeping its current state in case the connection
to the data source is lost, and retrying the connection after a reasonable time has passed
without any loss of data. If the connection cannot be restored, a human operator is
notified to take action.

Visualization

Other SAFIRE Web

I - Storage
modules Services

Unified Processing
Engine /

- -
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Figure 2: Conceptual Predictive Analytics Platform architecture

The modules of the platform are described next.

2.1 UNIFIED PROCESSING ENGINE

The Unified Processing Engine provides support for doing advanced analytics on both
real-time and batch approaches. This module is based on Apache Spark. A Unified Big
Data Framework. Moreover, as defining complex real-time analytics is difficult right
now with that kind of frameworks a Complex Event Processing (CEP) engine has been
included on the platform covering this use case. The CEP engine used on SAFIRE is
called Espertech. Espertech, provides to the developer with Domain Specific Language
(DSL) language based on SQL that helps to define complex real time analytics patterns.

For the cases when Apache Spark is used for real-time scenarios, a custom Ul interface
with a REST API for monitoring the different defined streaming queries has been
developed. This Ul interface can be seen on the Figure 3.

Sn

| SAFIRE - Real-Time Query Monitoring

st | sepamy | oo |

Rows PerSecond » 11 NumBatch » 1l
0 2

Figure 3 - Spark Ul module for real-time metrics

2.2 STORAGE

The relational storage is covered using PostgreSQL, a leading Open Source Relational
Database System. The relational database performs several of the data quality checks
listed in D2.5 Final Specification of Predictive Analytics Platform. The No-SQL storage
is covered by using Apache Cassandra Database, a key-value based database with
horizontal scalability properties and with great integration with the Big Data landscape
via different connectors. For each of the use cases of the platform, where to store the
data and what to store where (relational data or non-relational data) must be decided.

2.3 VISUALIZATION

In order to be able to visualize the results of the analytics two tools are provided within
SAFIRE Predictive Analytics Platform for different kind of users:

15 February 2019 Version 1.0 Page 3
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1. Business Intelligence: in order to provide support for Business intelligence
dashboards Apache Superset tool is provided. provides an easy way to define
different web-based dashboards with a lot of connectors to multiple databases.

2. Data Scientist: in order to provide support for data scientists that need to
interact easily with the stored data in SAFIRE and need to execute interactive
advanced analysis over huge quantities of data and visualize those analyses in
an easy way, Apache Zeppelin is provided within SAFIRE to fulfil this task.
Zeppelin is a web-based notebook that provides support for interactive analytics
over Big Data easily.

2.4 SCALABILITY AND HIGH AVAILABILITY
High availability and scalability are supported through the use of a resource orchestrator
such as Kubernetes (unified resource manager), Mesos or Yarn. Tools like Spark make
use of this type of systems to be highly available. In addition, the deployed services
(API) can use this type of managers to be able to be restarted in different nodes or with
several instances, in order to distribute the load.
To achieve scalability, this type of managers has support to add and remove instances
during execution in order to have more resources available. Regarding the availability
of the algorithm, depending on the tool used and the algorithm itself, it will be possible
to perform an approximation (raise more instances of the algorithm) or to parallelize it
more (Spark MLLib has support for parallelizable algorithms).
2.5 IMPLEMENTED EP FUNCTIONALITIES
Some of the functionality already implemented (in the Early Prototype), has been
refined in the Full Prototype. An overview of the functionality implemented, is listed in
the following table using the requirements as a guide.
Table 1: Data Mining and Analytics Requirements
Req. Requirement Overall Priority Status
No.
U78 | Supports data mining to extract useful SHALL Implemented
patterns about operator behaviour
U79 | Supports data mining to extract useful SHALL Implemented
patterns about machine status
U80 | Supports data mining to extract useful SHALL Implemented
patterns about production process
status
U8l | Provides support for selection of SHALL Implemented
sensors / systems to be analysed
U82 | Provides support for selection of SHALL Implemented
information sources to be analysed
U83 | Provides support for data/sensor SHALL Implemented
composition functionality
U84 | Able to provide historical knowledge SHOULD Implemented
about system deviations or problems
Page 4 Version 1.0 15 February 2019
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Reg. Requirement Overall Priority Status

No.

U85 | Able to provide decision support for SHOULD False
production line selection

U86 | Able to increase visibility of the SHALL False
production process

U87 | Supports analysis for algorithm SHALL True
definition for boiling/temperature
control functionality

U88 | Supports sensitivity analysis to noise SHALL Implemented

U89 | Supports main variation factor SHOULD False
identification and robust strategy for
minimising

U90 | Supports computational resources SHOULD False
estimation of machines

U91 | Supports estimation of performance SHOULD False
decrease for algorithm complexity
reduction

U92 | Supports process repeatability and SHALL False
stability characterisation

U93 | Supports Design of Experiments SHOULD Implemented
(DOE) and Analysis of Variance
(ANOVA) analysis

Table 2: Performance Requirements

Req. Requirement Overall Priority Status

No.

U115 | Does not negatively affect the usual SHALL Implemented
production processes

U116 | Support for scalability in the size of SHALL True
cloud and computing resources

U117 | Support for horizontal scalability to SHALL True
many machines

U118 | Capable of real-time data ingestion SHALL Implemented
(registering data)

U119 | Capable of batch processing of data SHALL Implemented
(offline analysis)

U120 | Capable of real-time data processing SHALL Implemented

U122 | Able to analyse relevant data within a SHALL Implemented,
given timeframe depending on the

Analytics and the
Computing
Resources

U123 | Capable of storing up to 5 SHALL Implemented
TB/year/machine with resource
recycling facilities

U124 | Provides support for Machine Learning SHALL Implemented

15 February 2019 Version 1.0 Page 5
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Req. Requirement Overall Priority Status
No.
(Supervised / Unsupervised / Anomaly
Detection)
U125 | Able to achieve required precision on SHALL Implemented

cooking process estimation /
optimisations

Table 3: Integration Requirements

Requirement Overall Priority

U130 | Able to access data stored in a SHALL Implemented
relational database

In the next charts a summary of the covered “shall” and “should” requirements is

presented.
"Shall" requirements
Non covered, 3
Covered, 18
Page 6 Version 1.0 15 February 2019
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"Should" requirements
Covered, 2
Non covered, 4
3. INTEGRATION WITH OTHER MODULES

The Full Prototype of the Predictive Analytics Platform is integrated with the following

modules:

Data-Ingestion: The data ingestion modules are NiFi templates that are in charge
of sending data to SAFIRE Kafka cluster. The following data ingestion modules
are available:

OAS proNTo: The data ingestion module in the OAS case connects to the
Oracle database server of the proNTo system (simulated factory) and ingests
the data required by SAFIRE modules into the Kafka cluster.

ONA Cloud: This data ingestion module in the ONA case connects to the
REST API of ONA cloud and ingests the data required by SAFIRE modules
into the Kafka cluster.

ONA Machine: This data ingestion module in the ONA case connects to
the ONA machine using the XML based protocol, send it to the cloud via
remote NiFi to NiFi connection and then, data required by SAFIRE modules
is published into the Kafka cluster.

Electrolux: The data ingestion module in the Electrolux case connects to
the data provided by the experimental cooker setup. Results are read from
Matlab/CSV files and sent to the cloud using the MQTT IoT protocol for
simulating a real scenario. Then, SAFIRE modules ingest data and send it to
the Kafka cluster.

15 February 2019

Version 1.0 Page 7
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For the full prototype, integration with other SAFIRE modules will be developed using
a Web service approach (e.g. asking for historical data stored in the Predictive Analytics
Platform).

4, INSTALLATION, CONFIGURATION AND USAGE
This section describes the installation, configuration and usage of the Full Prototype of
the Predictive Analytics Platform. The business case specific customisation is described
in Section 5.
4.1 INSTALLATION
The Predictive Analytics Platform can be downloaded from
https://qitlab.atb-bremen.de/SAFIRE/safire-predictive-analytics
The steps to install will be defined in a file in that repository. Note that some steps can
need a valid AWS account and can incur in AWS costs.
4.2 CONFIGURATION
As the Predictive Analytics platform has a huge list of Frameworks to configure. Each
one with different possibilities, please refer to the official documentation of each
framework where specific configuration is needed.
5. BUSINESS CASE SPECIFIC CUSTOMISATION
5.1 ELECTROLUX
511 Predictive Analytics
Electrolux Business Case has been tested by implementing the following two services:
e Boiling status detection of a pot without using direct physical sensors inside the
pot.
e Temperature estimation of a pot without using direct physical sensors inside the
pot.
The prediction service doesn’t know nor the amount of water in the pot, neither the
power applied to the pot, but only the currents in the coil and the temperature of the coil
itself. The models have trained off-line but can be invoked in real-time (order of
seconds) so that the detection (boiling or temperature) can be done in real-time.
The data flow needed for EP-support of the Electrolux business case in the Early
Prototype was simulated with a custom simulator that was reading offline data from
different Electrolux experiments (.csv files) and sending it to the standard
communication for the Internet of Things MQTT.
From that point, a simple NiFi template that can be seen on Appendix 8.1.3 was used to
ingest data for the SAFIRE Platform. An overview of can be seen on Figure 4.
Page 8 Version 1.0 15 February 2019
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E]Electrolux
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| 1. Simulated datais | 73 Sparcdo the inference of FAZ
E ingested using MQTT : | the neuronal network in real | Spo
Erl‘:;mco' via Apache | time and send back results |
| 0. Tensorflow & Keras for | N
1 algorithm building and — ".
prototyping. 1 Tensor
Figure 4 - Detailed Data Flow for the Electrolux scenario in the Early Prototype
For Final Prototype data is gathered from Matlab (c) that is connected to a cooking and
sends the data to SAFIRE via MQTT, mosquito, NiFi and Kafka (and finally to Spark as
previous case) as shown in Figure 5.
el L T e e
| | SMOTT
B AT () — (1~ ek
: Matlab ©| ml)s vitto :
L____] T B O
|| 1. Mqtt brokers 11 2. Nifi get data from i |
|i connectswith smart ' the Mosquitto Broker, | |
I: products. ' i routes to Kafka, filter, ! |
l" """""""""""" 1 enrich, normalize i |
Figure 5 - Detailed Data Flow for the Electrolux scenario in the Final Prototype
The data model used for Electrolux as the experiments contains different timestamps
with the data from all the currents of the induction hob. Moreover, each “row” also
contains whether the water is boiling or not.
Prediction Execution Flow
Real time prediction is executed by a Predictive Analytics service in the cloud
(developed in Java and deployed as a *.jar). When the cooking (or matlab(c)) invokes
the service (via message into MQTT or directly invoking the service via REST Web
Service), the service (1) loads a trained predictive model (spark model, keras model,
15 February 2019 Version 1.0 Page 9
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etc), (2) evaluates the input with the model and
prediction (via the same path as the invocation).

5.1.2 Boling Status Detection.

The goal is to be able to detect the boiling status of a pot without using direct physical
sensors inside the pot. Some promising advantages of boiling detection include:

(3) sends back to the caller the

o Water boiling detection (even, customised to each person).

« Boil maintenance.
o Milk boiling.

e Oil boiling.

« Food cooking status estimation (i.e. spaghetti cooking status, French fries, etc).

From sate of the art it is known that the thermal status of a pot can be evaluated by
indirectly measuring electrical parameters (such as currents in a coil). In the case of
Electrolux, a patent pending fast sweep process allows multiple Current vs. Frequency
measures at the same time with minimal interaction with the cooking process. This idea
has the advantage of having more data (more currents) available for detection.

Error! Reference source not found.Figure 6 shows a plot with a boiling process.
Graph on the left shows the temperature of the water (starting at 20° Celsius and
reaching 100°) and graph of the right shows the plotting of six currents (in amperes).
Typically, behaviour of the currents (after initial transition of about 60 seconds) is a
decreasing phase, followed by a plateau (flat) phase, and followed by a very little

increasing that indicates that the pot is boiling.

1 Time ([s] Energy [KIT_Water [T_Coil [C] Cur_FO1 [£Cur_FO2 [£Cur_FO3 £ Cur_FO4 [£ Cur_|
2 | 000116 0 1889191 91,62549 0 0 0 0
3 0,00

Multiple Currents measured in the coil
during boiling process

o P Q R
_F10 [£ Cur_F11 [£ Cur_F12 [£ Cur_F13 [A]
107 34,37633 26,12518 21,19835 16,52472
16,07222

0,000

T_Water [C]

T_Water (]

mmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmm
aaaaaaaaaaaa RR33
\ 0 0 0 0 0 54,80998 45,62283 40,04664 35,187

0 54,83432 46,64531 40,31847 34,80 V73

Objective is to Predict Boling Point in real time ]

ur_FO5 [A]
ur_F06 [A]
ur_F07 [A)
ur_FO8 [A]
ur_F09 [A]
ur_F10[A]

526 24,52795 23,18466 15,34884
24,62261 22,01622 15,41869

Boling Point is typically produced after
the “plateau” phase.

15,75111
15,82329
15,81802
15,59343
15,45227
1551115
15,52292
15,48822
15,42889
15,45324
15,41844
15,51478

15,3839
15,5956

Figure 6 - Plot of currents during a boiling process
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Sometimes, as in Figure 7 current shapes resulting from a boiling process show a clear
pattern of decrease-plateau-little increase shape. Therefore, boiling point identification
is relatively easy.
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Figure 7: Boiling process with currents pattern easily showing the boiling point.

Unfortunately sometimes, as in Figure 8Figure 8Figure 7, current shapes resulting from
a boiling process don’t show a clear pattern of decrease-plateau-little increase shape. In
Figure 8Figure 8 it is not easy to recognize the end of the plateau phase. In this case,
boiling point identification is quite difficult.
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Figure 8: Boiling process with current pattern with unclear boiling point.

Having multiple currents alleviates the problem described in Figure 8Figure 8. A close
look at the figure reveals that, although current FO8, F09, F10 don’t show a clear boiling
point, currents FO5, FO6, FO7 shows a much clearer boiling point. Thus, the use of
multiple currents may be an advantage.
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Predictive Analytics has been used in this BC as follows:

e Training Phase — A neural network has been used with the help of 144 boiling
experiments carried out by Electrolux. For each experiment, Electrolux has
monitored, second by second, the value (in Amperes) of a set of currents. In
addition to this, a temperature sensor in the pot has measured the temperature
second by second. With this data, a machine learning algorithm, in this case a
Neural Network, has been trained to learn to recognise the boiling point of the
pot:

o 96 of the 144 experiments (66.6%) have been used as training set.

o 48 of the 144 experiments (33.3%) have been used as development
set.

o Testing Phase — Later, the neural network has been tested. For each experiment,
the testing has been done as follows:

o The neural network receives the currents second by second
(simulating a real time boiling process).

o Second by second, the neural network, with the current data received
so far, decides if the pot is boiling or not.

Next sections show details of the neural networks training processes and the results
achieved.

Neural Network architecture and training
Sample generation for training

A neural network consists of a stacked number of layers composed by neurons. The
network usually has one input layer (of fixed size), some hidden layers, and an output
layer. The key point here is that the input layer is a fixed size layer and therefore,
receives a current pattern of a fix number of points.

As it has been mentioned earlier, the network receives the currents second by second.
This means that network is first activated after the first valid 100 seconds (the very first
90 seconds are discarded as they are very noisy, so, from that point on, the values are
considered valid), but also, this means that after 100 seconds, the network has to deal
with an increasingly larger collection of values (representing all the values of a given
current received so far). Just an example, after 4 valid minutes of starting its job, the
network has 4x60=240 values (per current).

However, as mentioned at the beginning of this section, a network has a fixed input size
and cannot handle variable length inputs. To solve this problem, input signals are down
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sampled to 100 points. In other words, each time a new value is received (second by
second), the whole signal received so far is down sampled to 100 points.
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Figure 9: Sample generation

In Figure 9Figure 9 (graph on the right) red squares represents time windows. As time
passes, the whole signal (down sampled to 100 values) is passed to the network.

In addition to down sampling the signal received so far, it is convenient to eliminate the
noise of the signal. Some methods have been tried but finally, a down sampling and a
noise elimination is carried by a performing a polynomial regression (degree 3) of all
points received so far and. Then, the regressed signal is re-sampled in equally spaced
100 points. After down sampling, the values are normalized (mean 0, variance 1.0).

Best Accuracy with no Overfiting

J

Medium Accuracy but Overfiting

[ Worst Accuracy but no Overfiting

ss pmion N\ Degree 3 o8 Fo9 F10
\&\,\}I \ Train Accuracy % 97,0 97,8 98,3

53.0
Wv Dev / Test Accurary % 96,3 96,8 96,9

525 Uﬂtﬁ

e w\ﬂ Degree 2 Fo8 F09 F10
s Train Accuracy % 94,2 94,6 94,5
o Dev / Test Accurary % 93,5 93,5 93,7

50.5
50.0 Degree 7 Fo8 F09 F10
o5 W/“ Train Accuracy % 96,8 95,3 97,7
Dev / Test Accurary % 94,7 93,2 94,5

Softening prevents overfiting better than dropout

Figure 10:

Samples softened and resized to 100 points with polynomial regression of different degrees
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Several polynomial degrees have been tried and finally degree 3 has been found the
best. In addition to eliminating the noise, polynomial interpolation helps the neural
network to generalise better, avoiding overfitting.

With 144 experiments, this process generates a total of about 45.000 samples that are
labelled 0 (not boiling, in this case water temp < 98.0) or 1 (boiling, water tem >= 98.0).
These samples are given to the networks for training.

Networks architectures experimented
Several architectures have been tested so far:

e Fully Connected (Multilayer Perceptron) - a simple but powerful network in
which all neurons of a layer are connected to all neurons of next layer.

e LSTM (Long Short Term Memory) - networks with memory from past values.

e Convolutional NN - network which first layers consist of signal processing
convolutional filters.

e LSTM + Convolutional - combination of LSTM and Convolutional.
In addition to those architectures, two alternatives have been tried:

e Training one single network receiving one single current (usually FO9 that is,
normally a very clean signal).

e Training one single network receiving multiple currents (in this case, currents
FO08, F09, F10, as they are usually the cleanest signals).

« Training three single independent networks receiving each one just one single
current (FO8, FO9, F10, respectively) and using a kind of voting mechanism to
decide if the pot is boiling (all the three must agree in that the pot is boiling).

The third option (three networks with a voting mechanism) has been found more
accurate and robust. Figure 11Figure 11 shows training accuracy for all the three
networks (one per current). Accuracy represents the number of samples that are
correctly labelled.
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FO8 F09 F10
Train Accuracy 97,0% 97,8% 98,3%
Acc

%O fos
O f0o

S Epoch

Figure 11: Training accuracy of the three neural networks (one network per current)

Testing procedure

After training with samples coming from 66.6% of the experiments, validation and test
procedure consists of evaluating the accuracy of the network with the remaining
samples, it is, 33.3% of the total available samples. To simulate a real situation, signal
values are collected second by second. Each second, the signal received so far is
processed (down sampled, regressed to 100 points and normalized) and passed to the
network to predict boiling. Accuracy represents the number of samples that are correctly
labelled.

Figure 12Figure 12 shows accuracy of validation and test sets as the number of training
epochs increases (in our case, validation and test sets are the same, as there are few
samples).

FO8 FO9 F10

X Val/TestAccurary 96,3% 96,8% 96,9 %
cc

MO fs
®O

O no
_f Epoch

Figure 12: Validation/Test sets accuracy of the three neural networks (one network per current)

15 February 2019 Version 1.0 Page 15
Confidentiality: Public Distribution



D2.4 Full Prototype of Predictive Analytics Platform

—p
—~J

5.1.2.2 Results: Accuracy of Detection in Time

Accuracy in Time

More important than accuracy of results in terms of % of samples correctly labelled is
the accuracy of boiling detection in time, in other words, the error of detection (in
seconds) with respect to the exact boiling time.

Results of experiment carried so far show the following results:

o Training three single network receiving each one just one single current:

o

Three currents FO8, FO9, F10 respectively.

Fully Connected Neural Network architectures.

Voting mechanism (all three NN must classify sample as boiling).
Mean time error in validation/test data 12.2s.

Mean temperature difference in validation/test 0.84°C.

One case in validation/test data does not identify boiling point.
Three cases in validation/test data with large errors (55s to 915s).

Excluding those latter three cases, mean error in validation/test is
8.3s.

« Training one single network receiving one single current:

@)

Cleanest current used (F09):

Fully Connected Neural Network architecture.

Mean time error in validation/test 18.82s.

Mean temperature difference in validation/test 1.22°C.

One case in validation/test data does not identify boiling point.
Five cases in validation/test data with large errors (65s to 45s).

Excluding those latter five cases mean error in validation/test is
14.59s.

« Training one single network receiving three currents at once:
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o These are the worst results, probably due to the fact that there are too
few samples for such a complex network (a network processing three
currents at the same time becomes cumbersome).

Best network architecture

As mentioned before several architectures were tried but finally the simplest has been
found to be the best (it is simple but, at the same time, has full potential of behaving as
some of the others architectures). Best architecture so far was:

e X = Dense(100, input_dim=200, activation="relu’)(X_input) — This one layer
with 100 input neurons that are fully connected to the next layer.

o X = Dense(40, activation="relu’)(X) — second layer has 40 neurons that are fully
connected to the next layer.

o X = Dense(20, activation="relu’)(X) — third layer has 20 neurons that are fully
connected to the next layer.

o X = Dense(10, activation="relu’)(X) - fourth layer has 10 neurons that are fully
connected to the next layer.

e X = Dense(1, activation="sigmoid")(X) — final layer has one single neuron with
a sigmoid activation function. Its output is interpreted as a probability.

Conclusions

As a conclusion the better results are achieved by using multiple currents and training
three independent networks (trained separately each one with one current) and
implementing a voting mechanism (the pot is boiling when all the three networks
classify the sample as boiling).

It was expected that using more currents would improve detection accuracy, but it has
been discovered that training three independent networks and using a voting
mechanism, is a more robust solution because sometimes it has been observed that one
network is predicting that the pot is boiling but the other two don’t. This happens when
one of the currents has some random noise that may confuse the network. However, as
there are two more networks, the chance of having a noise that confuses all the three
networks at the same time is less probable, resulting into a more robust detection
algorithm.

Regarding the solution of one “big” network processing all signal currents at the same
time, it has been found that for such a complex network, many more samples would be
needed for training, so results are not conclusive (in our case, with the samples
available, the worst of all three alternatives).
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5.1.3 Temperature Estimation

The goal is to be able to estimate the temperature status of the water in the pot without
using direct physical sensors inside the pot.

In the previous test case (boiling) from state of the art it is known that the thermal status
of a pot can be evaluated by indirectly measuring electrical parameters (such as currents
in a coil). However, in the case of temperature estimation, to our knowledge, there are
no previous experiences of temperature estimation out from currents’ profiles and, in
the case of Electrolux, from coil temperature change profile.

Error! Reference source not found.Figure 13 shows a plot with a boiling process.
Graph on the left shows the temperature of the coil (starting at about 50° Celsius and
reaching more than 160°) and graph of the right shows the plotting of six currents (in
amperes). In previous test case, behaviour of the currents is known (decreasing phase,
plateau, very little increasing). In addition to this information, the network is fed with
the coil temperature (the profile shown in the graph is very typical).
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Figure 13: Plot of coil temperature and currents during a boiling process.

The temperature of the coil has been analysed in the samples and it has been found that
the temperature increase follows always a similar pattern, an initial phase with rapid
temperature increase followed with an increase that decays with the time. This
temperature profile, along with the currents profile, helps the network to estimate the
temperature.

Predictive Analytics has been used in this BC as follows:
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Training Phase — A neural network has been used with the help of 144 boiling
experiments carried out by Electrolux. For each experiment, Electrolux has
monitored, second by second, the value (in Amperes) of a set of currents. In
addition to this, a temperature sensor in the pot has measured the temperature
second by second. With this data, a machine learning algorithm, in this case a
Neural Network, has been trained to learn to estimate the temperature of the
water in the pot:

o 96 of the 144 experiments (66.6%) have been used for training.
o 48 of the 144 experiments (33.3%) have been used for testing.

Testing Phase — Later, the neural network has been tested. For each experiment,
the testing has been done as follows:

o The neural network receives, second by second, both the temperature
of the coil and the currents.

o The neural network estimates, second by second, the temperature of
the water in the pot.

Next sections show details of the neural networks training processes and the results
achieved.

5.1.3.1 Neural Network architecture and training

Sample generation for training

Sample generation is the same as in the case of boiling estimation but (a) samples are
labelled with the temperature of the water and (b) samples are enriched with samples of
the coil temperature, as shown in Figure 14.
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Figure 14 — Plots of coil temperature and currents signal

As in the case of boiling estimation, a network has a fixed input size and cannot handle
variable length inputs. To solve this problem, all input signals are down sampled to a fix
number of points.

As the problem of temperature estimation is more difficult than boiling detection,
samples are down sampled to 200 points (instead of 100 points). After down sampling
and smoothing, the values are normalized (mean 0, variance 1.0). In addition to down
sampling, to eliminate the noise (as in the case of boiling estimation) the signal is
smoothed with a polynomial regression (degree 3).

However, coil temperature is not filtered as it is a very clean signal with very low noise.
Nevertheless, the signal values are normalized between 0.0 and 1.0 before passing to the
network.

Networks architectures experimented
Several architectures have been tested so far:

e Fully Connected (Multilayer Perceptron) - a simple but powerful network in
which all neurons of a layer are connected to all neurons of next layer.

e GRU (Gate Recurrent Units) - networks with memory from past values.

Following the experience gained with previous test case, boiling estimation, the
approach taken is training three single independent networks receiving each one just
one single current (F08, FO9, F10, respectively) and the coil temperature and taken
the medium of the three temperatures estimated by the three networks.
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Testing procedure

After training with samples coming from 66.6% of the experiments, validation and test
procedure consists of evaluating the accuracy of the network with the remaining
samples, it is, 33.3% of the total available samples. In this case, accuracy represents the
medium square deviation from the actual temperature of samples and the temperature

predicted by the network.

5.1.3.2 Results: Accuracy of temperature estimation

Accuracy in temperature

Accuracy of results is given as a medium square deviation of the actual temperature
(labels of the samples) and the temperature predicted. Best results obtained for the three

single independent networks are the following:
o Network for FO8 + Coil

o Trained Samples
= Mean Square Deviation: 0,0027
= Mean Absolute Error: 3,8 C°
o Test Samples
= Mean Square Deviation: 0,0049
= Mean Absolute Error:4,89 C°
o Network for F09 + Coil

o Trained Samples
= Mean Square Deviation: 0,0025
= Mean Absolute Error: 3,64 C°

o Test Samples
= Mean Square Deviation: 0,0047
= Mean Absolute Error: 4,72 C°

e Network for F10 + Caoil

o Trained Samples
= Mean Square Deviation: 0,0024
= Mean Absolute Error: 3,63 C°
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o Test Samples
= Mean Square Deviation: 0,0049
= Mean Absolute Error: 4,84 C°

The following Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19 show a variety
of examples of temperature estimation for Test Samples, it is, non-trained samples.
Orange line represents the actual temperature of water while blue line represents the
temperature estimated by the network (mean of three networks’ estimations). Scale Y
axis of the graphs are labelled with 5° steps.

Boil_detection_10-Jul-2014_10-48-43 (no training)
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Figure 15 — Temperature estimation for case 10-jul-2014 10:48:43
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Figure 16 - Temperature estimation for case 10-jul-2014 11:44:44
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Boil_detection_10-Jul-2014_12-35-40 (no training)
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Figure 17 - Temperature estimation for case 10-jul-2014 12:35:40
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Boil_detection_10-Jul-2014_12-56-16 (no training)
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Figure 18 - Temperature estimation for case 10-jul-2014 12:56:16

55

Boil_detection_10-Jul-2014_13-08-05 (no training)
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Figure 19 - Temperature estimation for case 10-jul-2014 13:08:05

It is worth noting that the temperature estimation error at the end is less pronounced
than at the beginning. This is to be expected as at the end of the boiling process more
signal is available to the network, therefore, more accuracy is to be expected.

15 February 2019

Version 1.0 Page 23

Confidentiality: Public Distribution



D2.4 Full Prototype of Predictive Analytics Platform ShrIRE

Best network architecture

As mentioned before several architectures were tried but, so far, an architecture
composed by two subnetworks (one to process currents and another to process coil
temperature), followed by a subnetwork that combines both subnetworks, has been
found to be the best. Best architecture so far was:

Subnetwork to process Signals Currents

e X _input = Input(shape = X_input_shape)

X = Dense(50, input_dim=200, activation="relu’)(X_input) — Layer with 50
neurons fully connected to the next layer-
e X =Dropout(0,2)(X) — Dropout to avoid overfitting

e X = Dense(20, input_dim=200, activation="relu")(X) — Layer with 20 neurons
fully connected to the next layer-
e X =Dropout(0,2)(X) — Dropout to avoid overfitting

e X =Dense(4, activation="relu")(X)
Subnetwork to process Coil Temperature
e C_input = Input(shape = C_input_shape)
e C = Dense(50, input_dim=200, activation="relu’)(C_input) — Layer with 50
neurons fully connected to the next layer-
e C =Dropout(0,2)(C) — Dropout to avoid overfitting
e C = Dense(20, input_dim=200, activation="relu’)(C_input) — Layer with 20

neurons fully connected to the next layer-
e C =Dropout(0,2)(C) — Dropout to avoid overfitting

e C =Dense(4, activation="relu")(C)
Subnetwork to combine and process both subnetworks

XC = Concatenate()([X, C])

XC = Dense(8, activation="relu")(XC)
XC = Dense(4, activation="relu’)(XC)
XC = Dense(2, activation="relu’)(XC)
XC = Dense(1, activation="linear")(XC)

Note that final network has just one neuron that outputs the estimated temperature.

Page 24 Version 1.0 15 February 2019
Confidentiality: Public Distribution



-
o

D2.4 Full Prototype of Predictive Analytics Platform

5.14

5.2

Conclusions

As a conclusion the better results are achieved by using multiple currents and coil
temperature values. Network architecture composed by two subnetworks (one to
process currents and another to process coil temperature) followed by a subnetwork that
combines both subnetworks.

Temperature accuracy, in the mean case, is less than 5° C, which is a good result,
particularly because at the end of the boiling process (when accuracy is needed), the
accuracy is even better.

ONA

The ONA ingests data provided the ONA Industrial Cloud (OIC). The OIC is provided
by SAVVY Data Systems and the data contained in it can be accessed using a REST
API. The ingestion module uses this API to access the data.

The available data consists of metadata and the actual machinery data. The metadata can
be divided into the following types.

e Location: The location data includes the different actual physical locations
available. For each location, the unique location ID, name of the enterprise,
name of the location, location coordinates, and time zone.

e Machine: Machine data refers to the individual machines that are being
monitored. The available data consists of the unique machine ID, its name,
whether it is active or not, the ID of the physical location (the same ID as in the
location metadata), and the timestamp of last received information.

e Group: This type of metadata relates to the capture groups of indicators. For
each group the unique 1D, group name, description, collection frequency, data
size, whether it is active or not, the timestamp of last modification date, and the
machine and location IDs of the machine a particular capture group belongs to.

e Indicator: This metadata includes information of each of the monitored
variables. For each variable the unique ID, variable name, description, origin,
whether it is active or not, and the IDs of the group, machine and location they
belong to are provided. If the indicator also has a minimal, maximal, and
optimal values, these are also provided.

On the other hand, the actual machinery indicator data can be consumed in two ways:
by means of individual requests, or through a stream of data. Individual requests have to
include the start timestamp and end timestamp, and the response will only contain
information generated in that timeframe. However, each request has a maximal
timeframe and repeatedly requesting data while moving the timeframe is discouraged. If
continuous monitoring of the indicators is desired, the streaming data should be used. In
this case, a single request is made for a specific machine (or a list of machines) and the
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server will respond with the latest available data. The client should read the response
and keep the connection open for further reading, as the server will keep dumping new
data into the connection until it is disconnected. Thus, the ONA Monitor reads indicator
data through the data stream.

The Early Prototype of the ONA monitor reads data from the REST API and processes
it using Apache NiFi. The NiFi dataflow then persists this data into a PostgreSQL
relational database and also published on Apache Kafka for further distribution.

ONA

=y, = &) SAVVY 88 kafka

ni

\,

PostgreSQL

Figure 20 - Data transfer from the REST APl into the ONA Monitor.

The metadata dataflow, depicted in Figure 21, ingests metadata from the REST API.
Each type of metadata is provided by a different endpoint and is acquired in the
following way. First, the system polls for available locations, and the response indicates
the IDs for the locations the user has permission to read from. For each available
location metadata is requested, and then the list of available machines on that location is
requested. Then, each machine is polled, the machine metadata is stored, and also the
capture groups for that machine are requested. Then, for each capture group, the group
metadata is requested, followed by a request of the indicators belonging to that group.
Finally, for each indicator, the metadata is requested. The server responds using the
JSON objects as shown on Error! Reference source not found.. All this data is stored
n the PostgreSQL relational database with a structure based on the objects returned by
the server. Figure 21 shows the data model for the metadata. Metadata information
ingestion is done periodically to check for new information, but not too frequently to
comply with the API’s anti-abuse policy.
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groupMame
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groupFrequency
dataSize
active
machineld
locationld
groupLastDate
Figure 21 - Metadata data model.
{
"locationld": "E1L1",
"enterpriseName": "Empresa de demo",
"locationName": "Taller",
"geolocation"; "43.301227464575554,-2.0148110389709473",
"timezone": "Europe/Madrid"
}
Figure 22 - Example of REST API response for location metadata.
On the other hand, the streaming dataflow works in a different way. It only makes one
request each time it is executed but keeps the connection open to keep receiving data,
and then the data is processed much more thoroughly. The dataflow has four main parts:
e The API client group. Shown in Figure 35 (Appendix).
e The Stream Splitter group. Shown in Figure 36 (Appendix).
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e The PostgreSQL insertion group. Shown in Figure 37 (Appendix).

e The Kafka redistribution group. Shown in Figure 38 (Appendix).

The API client group is the interface with the REST API. This group contains
processors that prepare and execute the connection with the API. First the authorization
parameters are calculated and set. Then, the ONAStreamProcessor, a custom processor
developed for this project, opens a connection to the APl and keeps it open to read new
data as the server sends it. It works by not only triggering the next node in the dataflow
when data is received and transferred, but also makes sure that the processor calls itself
to be ready when new data arrives.

Each time a data package is received, it only regards a single machine and capture
group, but can contain data of many indicators.

The stream splitter group makes some slight processing of the data, but only the
modifications necessary to both insert it into PostgreSQL and republishing into Kafka.

The PostgreSQL insertion group first splits the data so that each flowfile of the dataflow
only includes a single indicator and its value. Then, the flowfiles are filtered so that only
the files containing the variables we are interested in continue in the process, and the
rest are dropped. This filtering benefits the overall system as it frees resources from
processing and storing unnecessary data. Then the data is modified so that it ends up
with a format conforming to a JSON object that contains all necessary data (machineld,
locationld, indicatorld, value, and timestamp) to convert it into an SQL query and insert
it into the database.

The Kafka redistribution group publishes the data without altering its structure. This
means that, unlike in the PostgreSQL insertion group, data is sent in a message in a
similar structure as it is received, and not split until each flowfile contains a single
indicator. However, the flowfiles do undergo some processing, in order to drop
flowfiles with no real data, and normalize indicator and machine names. Before
republishing the data into Kafka, the JSON objects are serialized into the avro binary
format, as this format is more efficient for digital transfer and storage. The schema for
the avro records is shown on Figure 23.
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521

"type": "record",
"name": "onaRecord",

"fields™: [{
"name": "machine",
"type": "string"
HA
"name": "group”,
"type": "string"
34 _
"name": "timestamp",
"type": "string"
HA
"name": "data",
“type”: {
"type": "array",
"items": {
"type": "record",
"name": "data",
"fields": [{
"name": "indicator",
"type": "string"
Ao
"name": "value",
"type": "string"
}
]
}
}
}
]

indicators in a PostgreSQL database.

Figure 23 - Avro Schema for Kafka messages.

Complex Event Processing

Another developed approach for obtaining data from ONA machines can be seen on
Appendix 8.1.2.

The Complex Event Processing (CEP) engine is in charge of processing the raw data
and creating complex indicators based on individual events received by the engine, and
acting upon them. It has been implemented using the Espertech engine.

The CEP engine ingests data from a Kafka broker, and persists the generated complex
Afterwards, a data visualization framework,
Apache Superset, feeds off of the persisted data to display the complex indicators for
human consumption through a web interface. Figure 24 shows the flow of the data from
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ingestion to visualization. The CEP engine itself is wrapped within a Java program. This
program ingests the data from the broker, feeds it to the Espertech engine and
subscribes to the output of the Espertech engine, forwarding its results to the database.
The rules for the engine are described in the Event Processing Language (EPL)
language, a SQL-like Doamin Specific Language (DSL) developed for Espertech.

Data ingestion

§g kafka =) = EsperTech | PostgreSQL

CEP engine

Complex Event storage

|

Complex Event visualization

OO Superset

Figure 24 — Complex Event Processing flow

The events received by the CEP engine contain four pieces of information:

Timestamp
Machine ID
Indicator ID
Indicator value

Page 30

Version 1.0 15 February 2019
Confidentiality: Public Distribution



SAFIRE D2.4 Full Prototype of Predictive Analytics Platform

From the same message stream events related to different machines are received, in
chronological order. One of the first steps performed by the CEP engine is to pivot the
received events by their machine ID and the (approximate) timestamp. Thus, it is the
CEP engine’s job to turn simple events like:

Timestamp Machine ID Indicator ID Indicator Value
2018/12/01 1 A 84
10:00:00.245

2018/12/01 1 C 43
10:00:00.255

2018/12/01 2 B 21
10:00:00.305

2018/12/01 2 A 86
10:00:00.551

2018/12/01 1 B 0
10:00:00.601

2018/12/01 2 C 100
10:00:00.817

Into complex events like:

Timestamp Machine ID A B C
2018/12/01 1 84 0 43
10:00:00

2018/12/01 2 86 21 100
10:00:00

The CEP engine only monitors certain variables provided by the SAVVY API. The list
of the monitored variables is the following:

e Ambient Temperature (ambientTemperature, measured by location, independent
of the machine)

Conductivity (conductivity)

Speed (speed)

Remaining Spool Percent (spoolRemainingWirePercent)

Remaining Spool Length (spoolRemainingWireLength)

Spool Type (spoolType)
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Theoretical Max. Speed (technological _theoretical Speed)
Current Wire Thickness (thickness)

Wire Speed (wireSpeed)

Wire Type (wireType)

Wire Diameter (wireDiameter)

Red Semaphore: Flag 1 (semRojoFlagl)

Red Semaphore: Flag 2 (semRojoFlag2)

Red Semaphore: Flag 3 (semRojoFlag3)

Red Semaphore: Flag 4 (semRojoFlag4)

Amber Semaphore: Flag 1 (semAmbarFlagl)

Amber Semaphore: Flag 2 (semAmbarFlag2)

Amber Semaphore: Flag 3 (semAmbarFlag3)

Amber Semaphore: Flag 4 (semAmbarFlag4)

Amber Semaphore: Flag 5 (semAmbarFlag5)
Green/Gray Semaphore: Condition 2 (semVerdeCond2)
Grey Semaphore: Flag 1 (semGrisVerdeCond1)

Grey Semaphore: Flag 1 (semGrisCond2)

Grey Semaphore: Flag 1 (semGrisCond3)

The CEP engine keeps the state of each monitored machine in the current timestamp.
Even though the event timestamp has a millisecond-level granularity, the timestamp of
the state is kept at second-level. This gives the system some flexibility, and, since data
from a single machine is received, at most, once per second there is no possibility of
data overlap within the same second.

The state of a machine includes all of the monitored variables. When a new event is
received, the engine checks whether the timestamp of the current state for that machine
and the timestamp of the event coincide. If they do, the value of the indicator is
registered in the state. If the timestamps do not match, the old state is published (even if
values for all indicators were not registered) and the current state of the machine is
reset.

Once the state is published, the computing of complex indicators begins. This is done in
several steps, because some complex indicators require other complex indicators being
computed in an earlier stage.

The produced warnings are:

Whether the machine is running or not

Whether the conductivity has been above a pre-established threshold or not

Whether the conductivity has been below a pre-established threshold or not

Whether the remaining spool percent has been above a pre-established

percentage threshold or not

e Whether the change in temperature in the previous hour was above a pre-
established threshold or not

e Whether the change in temperature in the previous 24 hours was above a pre-
established threshold or not
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The rules created to obtain these warnings are listed in Appendix 9.2.

These warnings are visualized in a Superset dashboard by means of chronograms.
Figure 25 shows a Superset dashboard used in SAFIRE using chronograms. In these
chronograms the X axis represents time. Each bar along the Y axis shows relates to a
different warning and the colour or the bar in a period of time indicates for how much of
that period the warning was active, with a darker colour representing more time with the
active warning.

Superset dashboards are set-up using a mix of its web interface and database-dependent
sentences. For relational databases, such as in this case, the used database-dependent
sequences are written in SQL. The superset dashboard has some parametrizable options
such as the machine (or machines) to visualise and the time range (by default the last
24h).

©O Superset o securty ™ # amsge” B Souces”  f Ches @ Daswwowts A& SoLLso ¥

Safire last 24 hours *

s 5 » % 5 o 5 5 5 % 5 = 5 B ® s p ©°s 5> 5 5 5 s s o s 5 m 3 s 5 s s o s s 55 ® o5 5 5%
F L LS AP PSP FFS # LIPS S S O S o S A AN I S S AR

Figure 25 — Chronograms in Superset

5.2.2 Predictive Analytics

In the context of Wire Electrical Discharge Machining (WEDM), one the goals of this
BC application is to be able to predict, in advance, the event of change of thickness of
the machined part. The ability able to know in advance that a change of thickness is
coming helps improving the cutting process.

WEDN process works by generating short electrical discharges between the cutting wire
of the machine and the part to be machined through a dielectric fluid (deionised water).
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Machined Part

discharge

Figure 26: WEDM cutting process

Each discharge generates a little crater of few micrometres in the part, thus, drawing the
shape of the part. Figure 27Figure 27 shows the voltage profile of several discharges.

Figure 27: Voltage profile of several discharges

During the process of cutting a part, as the wire approaches a change in the thickness of
the part, the discharge pattern changes (because the pressure of the dielectric fluid is lost
or changes).

Wire approaching a
change of thickness

Figure 28: WEDM cutting with changing thickness parts

When the thickness of the part to be machined changes, to avoid degrading the cutting
process, some process parameters need to be adapted. It would be very useful to be able
to detect in advance this kind of events as the machine is cutting.

The key observation to develop such a detection system is that some features of the
discharge voltage pattern may indicate that a change of thickness is approaching.
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5.2.3

5.23.1

Part’s Thickness Estimation

Sample generation for training

A number of experiments have been conducted by Ona registering the discharge voltage
with an oscilloscope with a resolution of 100ns. During the experiments, five different
zones (each 1 mm width) have been defined as shown in Figure 29Figure 29: Zone 1 is
5 mm away from the change of thickness point (these are optimal conditions), Zone 2 is
4 mm away, Zone 3 is 3 mm away, Zone 4 is 2 mm away and, finally Zone5 is just 1
mm away. The experiment design has followed a previous experience reported in [1] in
which a neural networks approach is successfully applied to the case.

In each zone, a number of cutting experiments were conducted (0,8mm cutting of the
total 1mm width of the zone, as the remaining 0,2mm are used to reset the
oscilloscope). Each cutting experiment is divided in 2s sequences, registering the
voltage with a sampling rate of 100ns, giving a total of 20.000 sample values per 2s
sequence (voltage ranges from 120V to -120V). Each 2s sequence is labelled with a
number 1 to 5 according to the zone in which the wire was cutting.

A total of 567 sequences have been recorded, each one of 2 ms (with 20.000 voltage
values) and each sequence is labelled with the zone value (1 to 5).

[ wire {

N\

=

Zone4d

I Cutting >

Figure 29: Zone definition during cutting experiments

Predictive Analytics has been used in this BC as follows:

e Training Phase — A variety of machine learning algorithms have been trained
with 70% of the sequences (with a balance between zones).

e Testing Phase — Later, the algorithms have been tested with the remaining 30%
of sequences.
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5.2.3.2 Feature Extraction for each sample

For each sample, a set of features is extracted. The set of feature values for each sample
(that will be used later to train machine learning algorithms) are the following:

e Sparks per Second category:

o Global Average Sparks/Sec — Average number of sparks per second
found in the sample.

o Td Low Average Sparks/Sec — Average number of sparks/sec with low
ignition delay time (td < 0.5 ps).

o Td Ok Average Sparks/Sec — Average number of sparks/sec with ignition
delay time ok (0.5 ps <= td <= 10 ps).

o Td High Average Sparks/Sec — Average number of sparks/sec with high
ignition delay time (10 ps < td).

e Max Peak, Duration and Energy category:
o Average Max Peak — Average pulse voltage max peak.
o Average Duration — Average pulse duration.

o Average raw Energy — Average raw energy discharge by the pulse,
computed as absolute area inside the peak.

e Delay Time category:

o Td Low Average Delay Time — Average delay time of sparks with low
ignition delay time (td < 0.5 ps).

o Td Ok Average Delay Time — Average delay time of sparks with ignition
delay time ok (0.5 ps <= td <= 10 ps).

o Td High Average Delay Time — Average delay time of sparks with
ignition high delay time (10 ps < td).

e lonization Phase Voltage category:

o Td Low Average lonization Phase Voltage — Average voltage during
ionization phase for sparks with low ignition delay time (td < 0.5 ps).

o Td Ok Average lonization Phase Voltage — Average voltage during
ionization phase for sparks with ignition delay time ok (0.5 ps <=td <=
10 ps).

o Td High Average lonization Phase Voltage — Average voltage during
ionization phase for sparks with high ignition delay time (10 us < td).
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Figure 30, Figure 31 and Figure 32 below show concepts involved in the features
(ignition delay time, ionization phase, pulse duration, pulse max peak, etc). For a
detailed description of these concepts see [2].

Ignition ‘
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Figure 30 — Ignition delay time and ionization phase details
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Figure 31 — Pulse Voltage max peak, Duration and Energy
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.................................................................................................................................................................
| Feature | Td | Zone @ | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Zone 5 | R. Pow 1/5 | R. Pow 3/5 |
77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777
Avg Sparks/sec all 20742.699 | 21102.61@ | 21031.532 | 19653.333 | 15776.614 | 12857.018 1.641 1.529
low 15242.699 | 15587.782 | 15483.671 | 14257.949 | 10928.883 | 8563.450 1.820 1.665
medium | 2132.931 | 2183.274 | 2177.365 | 2086.154 | 1725.131 | 1420.175 1.537 1.469
high 3367.069 | 3331.554 | 3370.495 | 3300.231 | 3122.600 | 2872.392 1.159 1.152
Ratio Sparks/All low 0.735 0.739 0.736 0.725 0.693 0.666 1.109 1.089
medium 0.103 0.103 0.104 0.106 0.109 0.110 1.068 1.041
high 0.162 0.158 0.160 0.168 0.198 0.223 1.416 1.327
Avg Current Pulse Max Peak A all 1.107 1.058 1.056 1.066 1.094 1.127 1.065 1.057
Avg Current Pulse Duration ps all 1.213 1.238 1.236 1.245 1.274 1.286 1.039 1.033
Avg Current Pulse Energy I i*v all 500.633 486.842 485.259 495.129 519.923 540.884 1.111 1.892
Avg Current Pulse Delay Time ps low 0.660 0.677 0.662 0.671 0.653 0.630 1.076 1.066
medium 7.161 7.170 7.158 7.178 7.156 7.234 1.009 1.008
high 25.852 25.122 25.141 25.363 27.132 29.522 1.175 1.164
Avg Current Pulse Tonization Phase Voltage Avg V low 10.825 11.099 10.823 10.903 10.663 10.251 1.083 1.064
medium 53.303 53.081 53.030 53.071 53.144 53.221 1.003 1.003
high 57.974 57.692 57.710 57.705 57.795 57.967 1.005 1.005

5.2.33

5234

-----------------------------------------------------------------------------------------------------------------------------------------------------------------

Figure 32 — Averages of Feature values for the different Zones

Signal Features directly served by Machine’s Controller

ONA machine’s controller is able to generate directly the features described above with
a period of milliseconds. Therefore it is possible to add a local machine learning module
in the machine that detects in real-time that a part-thickness change is approaching. The
module can be installed in an industrial PC inside the machine getting data generated by
the machine’s controller.

Machine Learning Algorithms tested

Predictive Analytics has been used in this BC with the following Spark’s machine
learning algorithms:

e Logistic Multi Class Regression
« Random Forest Trees

e Decision Trees

Python PySpark Source code of the algorithms and their parameters can be found in
Appendix 9.3.1.1.

Testing procedure

After training with 70% of the samples the test will be done with the remaining 30% of
the samples. The machine learning trained models will try to classify the sample in one
of the five zones and a confusion matrix will be computed to analyse the results.
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5.2.35 Results: Accuracy of Zone Detection

Better results have been produced by Logistic Multi Class Regression classification.
Accuracy achieved by each of the four algorithms can be found in Table 2. For samples
in each zone type, the accuracy in being identified as correct or as other type is given.

LogisticReg RandomForest DecisionTree

Class 1 Samples

Classified as 5 0.0% 0.0% 0.0%
Classified as 4 10.4 % 6.6% 8.3%
Classified as 3 28.8% 23.0% 38.6%
Classified as 2 56.0% 41.0% 37.1%
Classified as 1 4.8% 29.5% 16.0%
Class 2 Samples
Classified as 5 0.0% 0.0% 0.0%
Classified as 4 3.7% 6.2% 3.1%
Classified as 3 27.4% 31.0% 37.5%
Classified as 2 66.7 % 40.7 % 40.6 %
Classified as 1 2.2% 22.1% 18.7 %
Class 3 Samples
Classified as 5 2.1% 1.2 % 0.7 %
Classified as 4 20.3 % 19.4 % 13.8%
Classified as 3 46.2 % 39.4% 57.2%
Classified as 2 29.4 % 25.0% 22.5%
Classified as 1 2.1% 15.0% 58%
Class 4 Samples
Classified as 5 31.0% 29.7 % 31.7%
Classified as 4 60.0 % 52.3% 47.0%
Classified as 3 7.9% 12.8% 20.7 %
Classified as 2 1.3% 3.0% 0.6 %
Classified as 1 0.0% 2.3% 0.0%
Class 5 Samples
Classified as 5 93.4% 91.7 % 88.7 %
Classified as 4 6.7% 83% 11.3%
Classified as 3 0.0% 0.0% 0.0%
Classified as 2 0.0% 0.0% 0.0%
Classified as 1 0.0% 0.0% 0.0%

Table 2: Accuracy of Machine Learning algorithms in ONA case.
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5.24

5.3

Conclusions

Experiments conducted so far show that with Logistic Multi Class Regression algorithm
zone 5 can be detected in advance and is never mixed with zones 1, 2 and 3. Zone 5 is
correctly classified 93.4% of the times (1 mm before the change) but 6.7% of the times
is classified as zone 4.

Logistic Multi Class Regression was the better algorithm in samples of zones 1, 2, 4 and
5, but Decision Tree algorithm performed better for samples in zone 3.

This accuracy will improve with further experiments in which values of the features will
be provided directly by the machine’s control. Due to the fact that these values are
calculated directly by the micro controller, are more reliable than those calculated out
from the signals taken with an oscilloscope. Therefore it is expected an improvement in
the classification accuracy.

OAS

The use case is currently under development. Therefore, the changes that would have to
be made to support a new case will be depicted.

First, it is be necessary to see how to extract data from proNTo to SAFIRE platform.
proNTO is the process control system used by OAS and it stores data in a Microsoft
SQL Server database. In order to extract data from it a custom NiFi template should be
developed. This template will connect and interact to the database in order to extract
interesting events on different tables. The approach can be seen graphically on Figure
33.
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Figure 33 — Local acquisition system to be developed for OAS

The local NiFi will send data to a remote NiFi running on SAFIRE platform. The
remote NiFi will perform basic transformations to the incoming data and send the data
to a Kafka cluster.

After the data is ingested the data should be analysed and custom analytics will be
developed using the tools provided by the Predictive Analytics module.
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SOFTWARE TOOLS USED FOR IMPLEMENTATION

For the implementation of the Full Prototype several different development tools and
IDE! have been used. For the overall development of all system modules and
components, the Apache Netbeans IDE has been used. The different software tools
used, together with their version, link and functionality they are being used for, are

listed in the following Table .

Table 4: Overview of used key software tools Table

Functionality Software Version Link
IDE Apache Netbeans | >=8.2 https://netbeans.apache.org/
IntelliJ >=
2018.1.5
Build-Management tool Maven >=3.5.3 https://maven.apache.org
Version Control GITlab >=2.3
SVN
Issue Management Jira >=6.3
Infrastructure Automation Terraform >=0.11.7 https://www.terraform.io/
Infrastructure Provisioning Ansible >=2.4.3.0 https://www.ansible.com/
Programming Language Java >= http://www.java.com
1.8.0_xx
Web Application Framework Spring >=4.1 https://spring.io/
Infrastructure Provisioning Ansible >=2.4 https://www.ansible.com/
Infrastructure Automation Terraform >=0.11.7 https://www.terraform.io/
Runtime Environment / Applica- | Jetty >=8.0 https://www.eclipse.org/jetty/
tion Server
Unified Big Data Engine Apache Spark >=2.3.0 https://spark.apache.org/
Web based data science Apache Zeppelin | >=0.7.3 https://zeppelin.apache.org/
Business intelligence dashboards | Apache Superset >=0.25.6 https://superset.apache.org/
Complex Event Processing Espertech >=7.1.0 http://www.espertech.com/
JPA-based persistence Hibernate >=4.3 http://hibernate.org/
Database for testing H2 Database 1.3 http://www.h2database.com
Relational Database PostgreSQL >= 9.6 https://www.postgresgl.org/
No-SQL Database Apache Cassandra | >=2.2 https://cassandra.apache.org
Data processing and distribution Apache Nifi >=1.6.0 https://nifi.apache.org
Apache Kafka >=1.1.0 https://kafka.apache.org
Container virtualization Docker >=18.03.1- | https://www.docker.com
ce

! Integrated Development Environment

Page 42

Version 1.0

Confidentiality: Public Distribution

15 February 2019


https://netbeans.apache.org/
https://maven.apache.org/
https://www.terraform.io/
https://www.ansible.com/
http://www.java.com/
https://spring.io/
https://www.ansible.com/
https://www.terraform.io/
https://www.eclipse.org/jetty/
https://spark.apache.org/
https://zeppelin.apache.org/
https://superset.apache.org/
http://www.espertech.com/
http://hibernate.org/
http://www.h2database.com/
https://www.postgresql.org/
https://cassandra.apache.org/
https://nifi.apache.org/
https://kafka.apache.org/
https://www.docker.com/

-
o

D2.4 Full Prototype of Predictive Analytics Platform

7. CONCLUSIONS

This document presented the work done by SAFIRE in WP2, in particular in T2.3:
Early and Full Prototype of Predictive Analytics Platform, specifically it documents the
work on Full Prototype implementation.

Following the requirements and specification for SAFIRE Full Prototype defined in
accordance with SAFIRE Concept and Business Case requirements and analysis and the
following requirements definition, as well as the data model, external interfaces and
functional and technical specifications, the Full Prototype was developed. This
document serves as brief description of this Full Prototype implementation given that
the result of this task is the developed Software.
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9. APPENDIX
9.1 Ni1FI DATAFLOWS
In this section, the different Dataflows used for data ingestion are depicted. The code
for the XML templates and the different custom NiFi processors can be accessed via de
private repository of SAFIRE.
9.1.1 ONACloud
This section displays the NiFi dataflows used to ingest the ONA API data.
Figure 34 - NiFi d;taflo;/v for metadal’lcua” |ng‘estio"n.
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Figure 38 - NiFi dataflow for the Kafka Redistribution Group.

package es.

import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.

ikerlan.safire.nifi.processors;

apache.commons.logging.lLog;
apache.commons.logging.LogFactory;
apache.nifi.annotation.behavior.*;
apache.nifi.annotation.documentation.CapabilityDescription;
apache.nifi.annotation.documentation.SeeAlso;
apache.nifi.annotation.documentation.Tags;
apache.nifi.annotation.lifecycle.OnScheduled;
apache.nifi.annotation.lifecycle.OnStopped;
apache.nifi.annotation.lifecycle.OnUnscheduled;
apache.nifi.components.PropertyDescriptor;
apache.nifi.flowfile.FlowFile;
apache.nifi.processor.*;
apache.nifi.processor.exception.ProcessException;

import javax.net.ssl.HttpsURLConnection;
import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.MalformedURLException;
import java.net.SocketTimeoutException;
import java.net.URL;

import java.net.URLConnection;

import java.util.*;

@Tags ({"example"})

@CapabilityDescription("Provide a description™)

@SeeAlso({})

@ReadsAttributes({@ReadsAttribute(attribute="", description="")})
@WritesAttributes({@WritesAttribute(attribute="", description="")})
@TriggerSerially

public class ONAStreamProcessor2 extends AbstractProcessor {

HttpsURLConnection conexion;
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InputStream inputStream;
InputStreamReader inputStreamReader;
BufferedReader bufferedReader;
boolean sStop;

boolean error;
public static final Relationship REL_SUCCESS

.name("success"
.description("The flow file with the answer received from socket will be

new Relationship.Builder()

transferred to this relation")

.build();

public static final Relationship REL_FAILURE
.name("failure")
.description("The flow file with the original request that failed will be

new Relationship.Builder()

transferred to this relation")

.build();

public static final Relationship REL_ORIGINAL = new Relationship.Builder()
.name("original")
.description("The original request flow file received by the processor")
.build();

private List<PropertyDescriptor> descriptors;
private Set<Relationship> relationships;

static Log msglLog = LogFactory.getLog(ONAStreamProcessor2.class);

@Override

protected void init(final ProcessorInitializationContext context) {
msgLog.info("init");
final Set<Relationship> relationships = new HashSet<Relationship>();
relationships.add(REL_SUCCESS);
relationships.add(REL_FAILURE);
relationships.add(REL_ORIGINAL);

this.relationships = Collections.unmodifiableSet(relationships);

}

@Override
public Set<Relationship> getRelationships() {
return this.relationships;

}

@OnScheduled

public void onScheduled(final ProcessContext context) {
msgLog.info("onScheduled");
sStop = false;
error = false;

conexion = null;
inputStream = null;
inputStreamReader = null;
bufferedReader = null;

//crearConexion y abrirInputStream no se pueden mover aqui, donde seria lo

légico,

//ya que necesitan parametros que llegan en el flowfile

}

15 February 2019
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@Override
public void onTrigger(final ProcessContext context, final ProcessSession session)
throws ProcessException {

try {

msgLog.info("onTrigger");

if (session == null) {
msglLog.info("!!!1IT11IT11ISession is null!! Should this happen?");
return;

}

FlowFile flowFile = session.get();
session.transfer(flowFile,REL_ORIGINAL);

if (sStop) {
msglLog.info("Stop already triggered. Don't do anything");
session.remove(flowFile);
return;

if (flowFile == null) {

//flowFile = session.create();
return;

}

Map<String, String> attributes = flowFile.getAttributes();

String flowFileContent;
try {
if (conexion == null && !sStop) {
crearConexion(attributes);

}

if (inputStream == null && !sStop) {
abrirInputStream();
inputStreamReader = new InputStreamReader(inputStream);
bufferedReader = new BufferedReader(inputStreamReader);
msgLog.info("Stream readers initialized");
//flowFile =
session.putAttribute(flowFile, "XM2CSequence",String.valueOf(Long.valueOf(attributes.g
et ("XM2CSequence"))+1));

}
if (!sStop) {

if (lerror) {
while(!sStop){
FlowFile newFlowFile = leerLinea(flowFile, session);
newFlowFile =
session.putAllAttributes(newFlowFile,attributes);
session.transfer(newFlowFile, REL_SUCCESS);
session.commit();

}

} else {

Page 50 Version 1.0 15 February 2019
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linea);
cause));
} ca
} ca
} ca
}
} catch
msgL
}
}

String linea = null;

if ((linea = bufferedReader.readlLine()) != null) {
flowFile = session.putAttribute(flowFile, "error_data",

}

msgLog.info("Error:

+ linea);

session.transfer(flowFile, REL_FAILURE);

sStop = true;

String cause = null;
if (error) {

cause = "error";
} else {
cause = "user";

}

msglLog.info(String.format("Stop triggered by %s.

disconnect();

tch (MalformedURLException e) {
msglLog.error(e);

tch (SocketTimeoutException e) {
msglLog.error(e);

tch (IOException e) {
msglLog.error(e);

(Exception ex) {
og.error(ex.toString(), ex);

void crearConexion(Map<String,String> attributes) throws
MalformedURLException,IOException,SocketTimeoutException {

msglLog.info(System.identityHashCode(this)+" Opening connection. Attributes:
"t+attributes);

URL url
URLConne
if (!(co

= new URL(attributes.get("REMOTE_URL"));
ction conexionUrl = url.openConnection();
nexionUrl instanceof HttpsURLConnection)) {

Disconnecting”,

throw new IOException("La URL no es una direccion HTTPS valida");

}

conexion

conexion.

conexion

conexion.

conexion.

conexion

= (HttpsURLConnection) conexionUrl;
setAllowUserInteraction(false);
.setInstanceFollowRedirects(true);
setRequestMethod(attributes.get ("HTTP_TYPE"));

.setRequestProperty("X-M2C-Sequence",

attributes.get("XM2CSequence"));

conexion

.setRequestProperty("Authorization",

attributes.get("authorization_signature"));

conexion

}

void abrirlIn

.setReadTimeout (500000 * 1000);

putStream() throws IOException{

int responseCode;

setRequestProperty(“Content-Type", attributes.get("CONTENT_TYPE"));

15 February 2019
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responseCode = conexion.getResponseCode();
msglLog.info("Response code " + responseCode);
if (responseCode == 200) { // Respuesta correcta del servidor
msgLog.info("getInputStream");
inputStream = conexion.getInputStream();

}

else { // Respuesta error del servidor
msgLog.info("getErrorStream");
inputStream = conexion.getErrorStream();
error = true;

}

}

FlowFile leerLinea(FlowFile flowFile,ProcessSession session) throws IOException{
String linea, datos;
int numChar, actual;
char[] buffer;
FlowFile newFlowFile = null;

if ((linea = bufferedReader.readlLine()) != null) {
msgLog.info("Reading Line "+flowFile+" "+session);
numChar = Integer.parselnt(linea);
buffer = new char[numChar];
msglLog.info("Line will be "+numChar+" characters long");
actual = bufferedReader.read(buffer);
datos = new String(buffer);
msglLog.info("Line was "+actual+" characters long. Data: "+(actual < 100 ?

datos : datos.substring(0,100)+"..."));

msglLog.info("Received indicators: "+foundIndicators(datos));

newFlowFile = session.create();

// Update the name of the flowFile with data

newFlowFile = session.putAttribute(newFlowFile,"streamRead",datos);
// Update the name of the flowFile with the timeStamp

newFlowFile =

session.putAttribute(newFlowFile,"filename",String.valueOf(System.currentTimeMillis()

))s

}
else{

msgLog.info("null line. Close stream?");
}

return newFlowFile;

}

private List<String> foundIndicators(String linea){
List<String> ret = null;
int hasiera,amaiera = -1;

ret = new ArrayList<>();

while((hasiera = linea.indexOf("\"I_",amaiera+1)) > -1){
hasiera = hasiera+l;
amaiera = linea.indexOf("\"",hasiera);
ret.add(linea.substring(hasiera,amaiera));

}

return ret;

}

void disconnect()throws IOException{
msgLog.info("DISCONNECT");
if(bufferedReader != null){
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}
if(conexion != null){
conexion.disconnect();
conexion = null;
}
}
@OnStopped

bufferedReader.close();

inputStream = null;

inputStreamReader = null;

bufferedReader = null;

public void onStopped(){

}

sStop = true;
try {
disconnect();
} catch (IOException e) {
msgLog.error(e);
}
*/
msgLog.info("OnStopped");

@OnUnscheduled
public void onUnscheduled(){

sStop = true;

try {
disconnect();

} catch (IOException e) {
msgLog.error(e);

}

msgLog.info("onUnscheduled");

Code 2 - Custom processor for getting data to ONA Cloud API.

package es.

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

ikerlan.safire.nifi.processors;

com. fasterxml.jackson.databind.JsonNode;
com. fasterxml.jackson.databind.ObjectMapper;
org.apache.commons.lang.exception.ExceptionUtils;

org.apache.commons.logging.
org.apache.commons.logging.
org.apache.nifi.annotation.
org.apache.nifi.annotation.
org.apache.nifi.annotation.
org.apache.nifi.annotation.
org.apache.nifi.annotation.
org.apache.nifi.annotation.
org.apache.nifi.annotation.
org.apache.nifi.components.

Log;

LogFactory;

behavior. *;
documentation.CapabilityDescription;
documentation.SeeAlso;
documentation.Tags;
lifecycle.OnScheduled;
lifecycle.OnStopped;
lifecycle.OnUnscheduled;
PropertyDescriptor;

org.apache.nifi.dbcp.DBCPService;
org.apache.nifi.flowfile.FlowFile;
org.apache.nifi.processor.*;
org.apache.nifi.processor.exception.ProcessException;
org.apache.nifi.processor.io.InputStreamCallback;
org.postgresql.ds.PGSimpleDataSource;
org.apache.commons.io.IOUtils;
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import javax.sql.DataSource;

import java.io.IOException;

import java.io.InputStream;

import java.nio.charset.StandardCharsets;
import java.sql.CallableStatement;

import java.sql.Connection;

import java.sql.SQLException;

import java.util.*;

@Tags ({"example"})

@CapabilityDescription("Provide a description")

@SeeAlso({})

@ReadsAttributes({@ReadsAttribute(attribute="", description="")})
@WritesAttributes({@WritesAttribute(attribute="", description="")})
@InputRequirement(InputRequirement.Requirement.INPUT_REQUIRED)

public class SafirePostgreSQLInsertCustomProcedureInvocator extends AbstractProcessor

{

static final PropertyDescriptor CONNECTION_POOL = new

PropertyDescriptor.Builder()

.name("JDBC Connection Pool")

.description("Specifies the IDBC Connection Pool to use in order to
convert the JSON message to a SQL statement. "

+ "The Connection Pool is necessary in order to determine the

appropriate database column types.")

.identifiesControllerService(DBCPService.class)

.required(true)

.build();

public static final Relationship REL_SUCCESS = new Relationship.Builder()
.name("success")
.description("The flow file with the answer received from socket will be
transferred to this relation")
.build();

public static final Relationship REL_FAILURE = new Relationship.Builder()
.name("failure")
.description("The flow file with the original request that failed will be
transferred to this relation")
.build();

private List<PropertyDescriptor> descriptors;
private Set<Relationship> relationships;

static Log msglLog =
LogFactory.getLog(SafirePostgreSQLInsertCustomProcedureInvocator.class);

@Override

protected List<PropertyDescriptor> getSupportedPropertyDescriptors() {
final List<PropertyDescriptor> properties = new ArrayList<>();
properties.add(CONNECTION_POOL);
return properties;

}

@Override

protected void init(final ProcessorInitializationContext context) {
msgLog.info("init");
final Set<Relationship> relationships = new HashSet<Relationship>();
relationships.add(REL_SUCCESS);
relationships.add(REL_FAILURE);
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this.relationships = Collections.unmodifiableSet(relationships);

}

@Override

public Set<Relationship> getRelationships() {
return this.relationships;

}

@Override

public void onTrigger(final ProcessContext context, final ProcessSession session)

throws ProcessException {

msglLog.info("onTrigger2");
final FlowFile flowFile;
flowFile = session.get();
if(flowFile == null){

//This can easily happen when using multiple processing units. All are
called, only one can acquire FlowFile.

return;

}
try{
msglLog.info("111111111111122111112122221111122222111122221111112121211111111
"+(session != null)+" "+(flowFile != null));

InputStream in = session.read(flowFile);

ObjectMapper mapper = null;

JsonNode root = null;
msgLog.info("222222222222222222222222222222222222222222222222222222222222222"+(in !=
null));

try {

mapper = new ObjectMapper();
msgLog.info(String.format("333333333333333333333333333333333333333333333333 %b
%b" ,mapper != null,in != null));
root = mapper.readTree(IOUtils.toString(in, StandardCharsets.UTF_8));
msgLog.info("444444444444440440048400404004840040400044040440044404044404044444");
in.close();
msgLog.info("555555555555555555555555555555555555555555555555555555555™ ) 5
}
catch(IOException ex){
msglLog.info(ex.getMessage(),ex);
session.transfer(flowFile,REL_FAILURE);

}

msglLog.info("inputStream closed");

String machine, group, indicator;

Double value = null;

Long timestamp = null;

msgLog.info(root.toString());
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msglLog.info("66666666666666666666666666666666666666666666666666666666666") ;

machine = root.get("machine").textValue();
group = root.get("group").textValue();
indicator = root.get("indicator").textValue();
value = root.get("value").doubleValue();

//timestamp = Long.valueOf(root.get("timestamp").textValue());
String timestampo = root.get("timestamp").textValue();

msglog.info("777777777777777777777777777777777777777777777777777") ;

try {
//
// Prepare a call to the stored procedure 'demoSp'
// with two parameters

//

// Notice the use of JDBC-escape syntax ({call ...})

//

// onaschema.add_stream(machine text, "group" text,

indicator text, value double precision, "timestamp" text )

msglLog.info(String.format("data: %s %s %s %f

%s" ,machine,group,indicator,value,timestampo));

//call.setString(String,String) NO ESTA IMPLEMENADO PARA LA LIBRERIA

DE POSTGRESQL. CONSTRUIR EL CALL A PELO

//se necesita usar Locale.US para que el punto decimal sea un punto y

no una coma.

String call = String.format(Locale.US,"{call

onaschema.add_stream('%s"', '%s', '%s', %f, '%s') }"

}

smachine.replace("'","\\"'")
,group.replace("'","\\'")
sindicator.replace(""'","\\"'")
,value
,timestampo);
msgLog.info("call: "+call);
msgLog.info("Connection? "+conn);
CallableStatement cStmt = conn.prepareCall(call

)5

cStmt.execute();
session.transfer(flowFile,REL_SUCCESS);
}
catch (Exception ex) {
msglLog.error(ex.getMessage(),ex);
session.transfer(flowFile,REL_FAILURE);

}

catch(NullPointerException npex){
msgLog.info("StackTrace elements? "+npex.getStackTrace().length);
msgLog.error(ExceptionUtils.getStackTrace(npex));
throw npex;

}

session.commit();

PGSimpleDataSource ds = null;

Connection conn = null;

@OnScheduled

public void onScheduled(final ProcessContext context) {

msglLog.info("onScheduled <<<<<<<<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLkk<M);

try {
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conn =
context.getProperty(CONNECTION_POOL).asControllerService(DBCPService.class).getConnec
tion();
msgLog.info("Connection set");
} catch (Exception e) {
msgLog.error(e);
throw new RuntimeException(e);
}
}
@OnUnscheduled

void onUnscheduled(){
msglLog.info("onUnscheduled <<<<<<<<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLk<M);

}

@OnStopped
void onstopped(){
msglLog.info("onStopped <<<<<<<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL<M)

}

Code 3 - Custom processor for storing data to PostgreSQL database

9.1.2 ONALink

Another method to acquire Data from ONA machines is to acquire data directly from
them using the ONA Link protocol. This protocol is based on XML and can be accessed
via direct telnet connection with the machines. With this method, a local instance of
NiFi will run in the same network than the ONA machine, then, the local NiFi will
extract data from the machine and will send it to a Remote NiFi that will be running on
SAFIRE platform.

The overall approach can be seen on Figure 39.

Publish
In
KAFKA

Consume

H from
r] (== KAFKA

% Store
¥,

Figure 39 - NiFi dataflow for getting data from ONA Link.

Following, the different process groups and NiFi dataflows for acquiring data using the
local approach can be seen.
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Figure 40 - General NiFi dataflow for obtaining data from ONA Link Protocol.
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Figure 41 - NiFi dataflow for the Kafka Group.
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Figure 42 - NiFi dataflow for the Ona Link Group.
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Figure 43 - NiFi dataflow for the Cassandra Group.

Next, the NiFi processor code for getting machine status data using the ONA Link
protocol is shown.

import java.net.Socket

import java.io.FileWriter;

import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;

import java.nio.CharBuffer;

import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;

import java.sql.Timestamp;

import java.util.List;

import org.apache.nifi.processor.io.OutputStreamCallback
import org.apache.commons.io.IOUtils
import org.apache.commons.logging.LlLog;
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import org.apache.commons.logging.LogFactory;
class ClsSfrOnaLinkRMCPStatusRequestClient implements Processor {
static SocketChannel GlbOnaRMSocketChannel = null;

def REL_SUCCESS = new Relationship.Builder()
.name( 'success"')
.description('The flow file with the answer received from socket will be
transferred to this relation')
.build();

def REL_FAILURE = new Relationship.Builder()
.name('failure')
.description('The flow file with the original request that failed will be
transferred to this relation')
.build();

def ONA_RM_HOSTNAME = new PropertyDescriptor.Builder()
.name( 'Hostname').description('Host name or Ip address to be connected
to')

.required(true).expressionLanguageSupported(false).addvValidator(Validator.VALID).buil
d()

def ONA_RM_PORT = new PropertyDescriptor.Builder()
.name('Port').description('Port number to be connected to')

.required(true).expressionLanguageSupported(false).addValidator(Validator.VALID).buil
d()

def ONA_RMCP_MSG_STATUS_REQUEST = new PropertyDescriptor.Builder()
.name('Status Request Message').description('ONA Link Protocol Message to
request State of machine')

.required(true).expressionLanguageSupported(false).addvValidator(Validator.VALID).buil
dQ)

static Log msglLog =
LogFactory.getLog(ClsSfrOnaLinkRMCPStatusRequestClient.class);

@Override
void initialize(ProcessorInitializationContext context) {}

@Override
Set<Relationship> getRelationships() { return [REL_SUCCESS, REL_FAILURE] as Set }

@Override
void onTrigger(ProcessContext context, ProcessSessionFactory sessionFactory)
throws ProcessException {

// Create session and flow file
def session = sessionFactory.createSession();
def flowFile = session.create();

// Variables to store the content to added to the flowfile
// and to know the relation to which the flowFile has to be sent.

String flowFileContent = H
boolean success = true;

// Extract paramaters
String onaRMHostname = '???';
String onaRMPort = '???°';
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String onaRMCPStatusRequestMessage = '???';

// Try to catch var data
try {

long timeStart;
long timeEnd;

[ = e

// Get parameters

onaRMHostname = context.getProperty(ONA_RM_HOSTNAME)?.getValue();
onaRMPort = context.getProperty(ONA_RM_PORT)?.getValue();
onaRMCPStatusRequestMessage =

context.getProperty(ONA_RMCP_MSG_STATUS_REQUEST)?.getValue();

// Check no empty values
if (onaRMHostname == '") {
throw new Exception("Cannot Start Processor: Hostname not specified.");

s
if (onaRMPort == '') {
throw new Exception("Cannot Start Processor: Port not specified.");
}s
if (onaRMCPStatusRequestMessage == '') {

throw new Exception("Cannot Start Processor: Status Request message not

specified.");

}s

// Check onaRMPort is a number
if (lonaRMPort.isInteger()) {
throw new Exception("Cannot Start Processor: Port is not a positive

Integer.");

}s

e PR

// Socket connection

// If SocketChanel not created or is not connected
if (GlbOnaRMSocketChannel == null || !GlbOnaRMSocketChannel.isConnected()) {

// Create the socket channel if needed

if (GlbOnaRMSocketChannel == null) {
GlbOnaRMSocketChannel = SocketChannel.open();
GlbOnaRMSocketChannel.configureBlocking(false);

}

// Try connect

msglLog.info('SocketChannel connecting ...');

GlbOnaRMSocketChannel. connect(new InetSocketAddress(onaRMHostname,

onaRMPort.toInteger()));

// Wait at most 5000 ms for connection
timeStart = System.currentTimeMillis();
while (!GlbOnaRMSocketChannel.finishConnect()) {
timeEnd = System.currentTimeMillis();
if ((timeEnd - timeStart) > 5000) {
throw new Exception("SocketChannel Connection timeout.");

}
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msgLog.info('SocketChannel connected.');

J ] e
// Status request

e ERCECEEEEPT P P PR

CharBuffer bufferSendStatusRequest;
ByteBuffer bufferReceiveStatusRequest;

// Write status request into channel.

// Add \r\n to the message request as required by ONA Protocol

bufferSendStatusRequest = CharBuffer.wrap(onaRMCPStatusRequestMessage +
"\r\n");

while (bufferSendStatusRequest.hasRemaining()) {

GlbOnaRMSocketChannel.write(Charset.defaultCharset().encode(bufferSendStatusRequest))

)

}
msgLog.info('ONA RMCP Status Request sent to server:

onaRMCPStatusRequestMessage);

// Loop until a response is received or timeout
bufferReceiveStatusRequest = ByteBuffer.allocate(1024);
timeStart = System.currentTimeMillis();

while (true) {

// See if any message has been received
while (GlbOnaRMSocketChannel.read(bufferReceiveStatusRequest) > 0) {
bufferReceiveStatusRequest.flip();
flowFileContent +=
Charset.defaultCharset().decode(bufferReceiveStatusRequest);

}

// If message received assign a time stamp
if (flowFileContent.length() > @) {
break;

}

// Wait at most 5000 ms for answer
timeEnd = System.currentTimeMillis();
if ((timeEnd - timeStart) > 5000) {
throw new Exception("ONA RMCP Status Request timeout.");
}
}

msglLog.info('ONA RMCP Status Request answer received from server:
flowFileContent);

[] o m e e oo
// Catch the exception
[ e e e
} catch(e) {
msglLog.info("ClsSfronaLinkRMCPStatusRequestClient Exception: " +
e.getMessage());
flowFileContent = "ClsSfrOnalLinkRMCPStatusRequestClient Exception: " +
e.getMessage()
success = false

}

J ]
// Transfer
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+

String.valueOF(System.currentTimeMiiiis()));

// Update the name of the flowFile with the timeStamp
flowFile = session.putAttribute(flowFile, 'filename', "ONALinkLogData" + "_"

onaRMHostname + + onaRMPort + " +

// Add content of the answer message to the flow file
flowFile = session.write(flowFile, { outStream ->

outStream.write(flowFileContent.getBytes("UTF-8"))} as OutputStreamCallback);

}

// Uoadte content of flowFile

if (success) {
msglLog.info('SUCCESS: FlowFile Content: ' + flowFileContent);
session.transfer(flowFile, REL_SUCCESS);

} else {
msglLog.info('FAILURE: FlowFile Content: ' + flowFileContent);
session.transfer(flowFile, REL_FAILURE);

}

// Commit the transaction
session.commit();

@Override
Collection<ValidationResult> validate(ValidationContext context) { return null }

@Override
PropertyDescriptor getPropertyDescriptor(String name) {

}

switch(name) {
case 'Hostname': return ONA_RM_HOSTNAME
case 'Port': return ONA_RM_PORT
case 'Status Request Message': return ONA_RMCP_MSG_STATUS_REQUEST
default: return null

@Override
void onPropertyModified(PropertyDescriptor descriptor, String oldvalue, String
newValue) { }

@Override
List<PropertyDescriptor> getPropertyDescriptors() { return [ONA_RM_HOSTNAME,
ONA_RM_PORT, ONA_RMCP_MSG_STATUS_REQUEST] as List }

@Override
String getIdentifier() { return 'ClsSfronalLinkRMCPStatusRequestClient-
InvokeScriptedProcessor' }

}

processor = new ClsSfrOnaLinkRMCPStatusRequestClient()

Code 4. Groovy Script for getting Status data from ONA machines

Finally, the NiFi processor code for obtaining machine variable data using the ONA
Link protocol is shown.
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import java.net.Socket

import java.io.FileWriter;

import java.net.InetSocketAddress;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;

import java.nio.CharBuffer;

import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;

import java.sql.Timestamp;

import java.util.List;

import org.apache.nifi.processor.io.OutputStreamCallback
import org.apache.commons.io.IOUtils

import org.apache.commons.logging.log;

import org.apache.commons.logging.LogFactory;

class ClsSfrOnaLinkRMCPStatusRequestClient implements Processor {
static SocketChannel GlbOnaRMSocketChannel = null;

def REL_SUCCESS = new Relationship.Builder()
.name( 'success"')
.description('The flow file with the answer received from socket will be
transferred to this relation')
.build();

def REL_FAILURE = new Relationship.Builder()
.name('failure')
.description('The flow file with the original request that failed will be
transferred to this relation')
.build();

def ONA_RM_HOSTNAME = new PropertyDescriptor.Builder()
.name( '"Hostname').description('Host name or Ip address to be connected
to')

.required(true).expressionLanguageSupported(false).addvValidator(Validator.VALID).buil
dQ)

def ONA_RM_PORT = new PropertyDescriptor.Builder()
.name('Port').description('Port number to be connected to')

.required(true).expressionLanguageSupported(false).addvalidator(Validator.VALID).buil
d()

def ONA_RMCP_MSG_STATUS_REQUEST = new PropertyDescriptor.Builder()
.name('Status Request Message').description('ONA Link Protocol Message to
request State of machine')

.required(true).expressionLanguageSupported(false).addvalidator(Validator.VALID).buil
d()

static Log msglLog =
LogFactory.getLog(ClsSfrOonaLinkRMCPStatusRequestClient.class);

@Override
void initialize(ProcessorInitializationContext context) {}

@Override
Set<Relationship> getRelationships() { return [REL_SUCCESS, REL_FAILURE] as Set }

@Override
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throws ProcessException {

// Create session and flow file
def session = sessionFactory.createSession();
def flowFile = session.create();

// Variables to store the content to added to the flowfile
// and to know the relation to which the flowFile has to be sent.

String flowFileContent = H
boolean success = true;

// Extract paramaters

String onaRMHostname = '???';

String onaRMPort = '???°';

String onaRMCPStatusRequestMessage = '???';

// Try to catch var data
try {

long timeStart;
long timeEnd;

/= ool

// Get parameters

T T ECEETEES

onaRMHostname = context.getProperty(ONA_RM_HOSTNAME)?.getValue();
onaRMPort = context.getProperty(ONA_RM_PORT)?.getValue();
onaRMCPStatusRequestMessage =

context.getProperty(ONA_RMCP_MSG_STATUS_REQUEST)?.getValue();

// Check no empty values
if (onaRMHostname == '') {

void onTrigger(ProcessContext context, ProcessSessionFactory sessionFactory)

throw new Exception("Cannot Start Processor: Hostname not specified.");
}s
if (onaRMPort == '") {
throw new Exception("Cannot Start Processor: Port not specified.");
}s
if (onaRMCPStatusRequestMessage == "'') {
throw new Exception("Cannot Start Processor: Status Request message not
specified.");
}s
// Check onaRMPort is a number
if (!onaRMPort.isInteger()) {
throw new Exception("Cannot Start Processor: Port is not a positive
Integer.");
}s
[ e e e
// Socket connection
[ e e e
// If SocketChanel not created or is not connected
if (GlbOnaRMSocketChannel == null || !GlbOnaRMSocketChannel.isConnected()) {
// Create the socket channel if needed
if (GlbOnaRMSocketChannel == null) {
GlbOnaRMSocketChannel = SocketChannel.open();
GlbOnaRMSocketChannel.configureBlocking(false);
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}

// Try connect
msgLog.info('SocketChannel connecting ...');
GlbOnaRMSocketChannel.connect(new InetSocketAddress(onaRMHostname,

onaRMPort.toInteger()));

"\r\n");

// Wait at most 5000 ms for connection
timeStart = System.currentTimeMillis();
while (!GlbOnaRMSocketChannel.finishConnect()) {
timeEnd = System.currentTimeMillis();
if ((timeEnd - timeStart) > 5000) {
throw new Exception("SocketChannel Connection timeout.");

}
}
msgLog.info('SocketChannel connected.');
}
[ e
// Status request
[ s m e

CharBuffer bufferSendStatusRequest;
ByteBuffer bufferReceiveStatusRequest;

// Write status request into channel.
// Add \r\n to the message request as required by ONA Protocol
bufferSendStatusRequest = CharBuffer.wrap(onaRMCPStatusRequestMessage +

while (bufferSendStatusRequest.hasRemaining()) {

GlbOnaRMSocketChannel.write(Charset.defaultCharset().encode(bufferSendStatusRequest))

b

}
msglLog.info('ONA RMCP Status Request sent to server: ' +

onaRMCPStatusRequestMessage);

Charset.

// Loop until a response is received or timeout
bufferReceiveStatusRequest = ByteBuffer.allocate(1024);
timeStart = System.currentTimeMillis();

while (true) {

// See if any message has been received
while (GlbOnaRMSocketChannel.read(bufferReceiveStatusRequest) > 0) {
bufferReceiveStatusRequest.flip();
flowFileContent +=
defaultCharset().decode(bufferReceiveStatusRequest);

}

// If message received assign a time stamp
if (flowFileContent.length() > @) {
break;

}

// Wait at most 5000 ms for answer
timeEnd = System.currentTimeMillis();
if ((timeEnd - timeStart) > 5000) {
throw new Exception("ONA RMCP Status Request timeout.");

}
}
msglLog.info('ONA RMCP Status Request answer received from server: ' +
flowFileContent);
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// Catch the exception
[ e e oo mmmmoeo—eooooe-
} catch(e) {
msgLog.info("ClsSfronaLinkRMCPStatusRequestClient Exception: " +
e.getMessage());
flowFileContent = "ClsSfrOnaLinkRMCPStatusRequestClient Exception: " +
e.getMessage()
success = false
}
L R e
// Transfer
L et
// Update the name of the flowFile with the timeStamp
flowFile = session.putAttribute(flowFile, 'filename', "ONALinkLogData" + "_"
+ onaRMHostname + "_" + onaRMPort + "_" +
String.valueOf(System.currentTimeMillis()));
// Add content of the answer message to the flow file
flowFile = session.write(flowFile, { outStream ->
outStream.write(flowFileContent.getBytes("UTF-8"))} as OutputStreamCallback);
// Uoadte content of flowFile
if (success) {
msglLog.info('SUCCESS: FlowFile Content: ' + flowFileContent);
session.transfer(flowFile, REL_SUCCESS);
} else {
msglLog.info('FAILURE: FlowFile Content: ' + flowFileContent);
session.transfer(flowFile, REL_FAILURE);
}
// Commit the transaction
session.commit();
}
@Override
Collection<ValidationResult> validate(ValidationContext context) { return null }
@Override
PropertyDescriptor getPropertyDescriptor(String name) {
switch(name) {
case 'Hostname': return ONA_RM_HOSTNAME
case 'Port': return ONA_RM_PORT
case 'Status Request Message': return ONA_RMCP_MSG_STATUS_REQUEST
default: return null
}
}
@Override
void onPropertyModified(PropertyDescriptor descriptor, String oldvalue, String
newValue) { }
@Override
List<PropertyDescriptor> getPropertyDescriptors() { return [ONA_RM_HOSTNAME,
ONA_RM_PORT, ONA_RMCP_MSG_STATUS_REQUEST] as List }
@Override
String getIdentifier() { return 'ClsSfrOnalLinkRMCPStatusRequestClient-
InvokeScriptedProcessor' }
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}

processor = new ClsSfrOnalLinkRMCPStatusRequestClient()
Code 5. Groovy Script for getting Status data from ONA machines.

9.1.3 Electrolux

This section displays the NiFi dataflow used in the final prototype to ingest data from
Electrolux induction hobs and Matlab(c). The NiFi dataflow can be overviewed in
Figure 44.

—~ ConsumeMQTT
~/ ConsumeMQTT 1.6.0

org.apache.nifi - nifimattnar

In 0(0 bytes) 5 min —~ UpdaleCcuntgr‘
Read/Write 0 bytes/114,19KB 5min D‘-’ ;.ii:ﬁ:m:té: R
out 296 (114,19KB) 5min m 256 (11419 K) o
Tasks/Time 14.200.093 / 00:02:36.255 5min Read/Write 0 bytes /0 bytes -
out 0(0 bytes) 5 min
Name Message ;‘askslﬁms 296 / 00:00:00.056 5 min

queue:l 0o hy"lys)‘ . Name success
Queued 0 (0 bytes)
-
) PublishKafka_0_10
~/

PublishKafka_0_10 1.6.0
‘org.apache.nif - nif-kafka-0-10-nar

m 296 (114,19 KB) 5min
Read/Write 114,19 KB/ 0 bytes 5 min
Out 296 (114,19 KB) 5 min
Tasks/Time 273 /00:00:00.744 Smin

Name failure
Queued 0 (0 bytes)

—~ UpdateCounter
— UpdateCounter 16.0

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes / 0 bytes 5min
Out 0 (0 bytes) 5min
Tasks/Time 0/00:00:00.000 5 min

Figure 44 - NiFi dataflow for getting data from MQTT.

9.2 ESPER RULES
‘ Event ' Type "Rule ‘
semRojo Event semRojoFlagl <> 0 OR semRojoFlag2 <>

0 OR semRojoFlag3 <> 0 OR
semRojoFlag4 <> 0

semAmbar Event semRojo = 0 AND (semAmbarFlagl <> 0
OR semAmbarFlag2 <> 0 OR
semAmbarFlag3 <> 0 OR
semAmbarFlag4 <> 0)

semGris Event semRojo = 0 AND semAmbar = 0 AND
(semGrisVerdeCondl <> 1 OR
semGrisCond2 <> 0 OR semGrisCond3
<>0)

semVerde Event semRojo = 0 AND semAmbar = 0 AND
semGris = 0 AND (semGrisVerdeCond1
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Thickness Event
MMR Event
spoolWireRemainingTime Event
codState Event
State Event
instantConsumption Event
WoconductivityInf Warning
WconductivitySup Warning
WspoolRemainingWirePercent Warning
Wtemperature_O1Hour Warning
Wtemperature_24Hour Warning
WmachineRunning Warning

9.3

<> 0 semVerdeCond2 <> 0)

IF thickness is NULL THEN 20 ELSE
thickness

wireSpeed /thickness

wireLength / wireSpeed

semRojo * 1 + semAmbar * 2 + semGris *
3 + semVerde *4
IF codState = 1 THEN Idle
IF codState = 2 THEN Alarm-Yellow
IF codState = 3 THEN Warning-Red
IF codState = 4 THEN Running-Green
ELSE Error
IF codState =
wireDiameter
IF codState = 4 THEN(
IF conductivity <= 11 THEN 1
ELSE 0

4 THEN wireSpeed /

)
ELSE 0

IF codState = 4 THEN(
IF spoolRemainingWirePercent >=

15 THEN 1
ELSE 0

)

ELSE 0

IF codState = 4 THEN(
IF conductivity <= 10 THEN 1
ELSE 0
)
ELSE 0
(MAX(ambientTemperature)
MIN(ambientTemperature) INTERVAL 1
HOUR) > 2
(MAX(ambientTemperature)
MIN(ambientTemperature) INTERVAL 1
DAY) >4
codState <> 4

PREDICTIVE ANALYTICS TEMPLATES

In this section, the Source Code templates used to (a) Define and Train Predictive
Models, (b) Develop Predictive Analytics Prediction REST Web Service Clients and (c)
Access Predictive Analytics by Sending Messages to MQTT, NiFi and Kafka are given.
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Part of this material has been specified in SAFIRE D2.5 full prototype specifications
deliverable but is included here again for clarity. The source code templates and the
examples allow non-expert users to define and train medium complexity models.

Templates to Define and Train Predictive Models

Templates for Spark

Python source code below shows a simple spark template of a Logistic Regression (this
function is part of several source code files used for ONA Electroerosion test case).

def trainModel LR (dataFrame, dataFrameFeatureColNames):

# Assemble the input to produce the features column
assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features")

# TODO

# Select the machine learning algorithm and its parameters
# In this case a Logistic Regression has been selected

Ir = LogisticRegression(maxlter = 100, regParam = 0.01)

# Chain in a pipeline the transformations
# and machine learning algorithm
pipeline = Pipeline(stages = [assembler, Ir])

# TODO

# Create a Parameter Grid for Cross Validation

# Assign a range to the hyper parameter for fine-tuning

paramGrid = (ParamGridBuilder()
.addGrid(lr.regParam, [0.01, 0.1, 0.3, 0.5])
.addGrid(Ir.maxlter, [10,25, 50, 100])
.addGrid(Ir.elasticNetParam, [0.0, 0.1, 0.2])
.build())

# Define cross validation model

crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=BinaryClassificationEvaluator(),
numFolds=5)

# Fit (train) the model
model = crossval.fit(dataFrame)

# Return the model bestModel
return model

Python source code below shows a simple spark template of a Decision Tree algorithm
(this function is part of several source code files). Following Spark’s philosophy, it is
very easy to interchange the algorithms to use to experiment with different alternatives.
The code of the logistic regression and the decision tree is very similar.

def trainModelDT (dataFrame, dataFrameFeatureColNames):
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# Assemble the input to produce the features column
assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features")

#TODO

# Select the machine learning algorithm and its parameters
# In this case a Decision Tree Classifier has been selected
dt = DecisionTreeClassifier()

# Chain in a pipeline the transformations
# and machine learning algorithm
pipeline = Pipeline(stages = [assembler, dt])

#TODO

# Create a Parameter Grid for Cross Validation

# Assign a range to the hyper parameter for fine-tuning

paramGrid = (ParamGridBuilder()
.addGrid(dt.maxDepth, [5, 10, 15, 20])
.addGrid(dt.maxBins, [5, 10, 20, 40])
build())

# Define cross validation model

crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=BinaryClassificationEvaluator(),
numFolds=5)

# Fit (train) the model
model = crossval.fit(dataFrame)

# Return the trained model
return model

Python source code below shows a simple spark template of a Random Forest Tree
algorithm (this function is part of several source code files).

def trainModelRF(dataFrame, dataFrameFeatureColNames):

# Assemble the input to produce the features column
assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features")

#TODO

# Select the machine learning algorithm and its parameters

# In this case a Random Forest Tree Classifier has been selected

rf = RandomForestClassifier(labelCol="label",featuresCol="features")

# Chain in a pipeline the transformations and machine learning algorithm
pipeline = Pipeline(stages = [assembler, rf])

#TODO
# Create a Parameter Grid for Cross Validation
# Assign a range to the hyper parameter for fine-tuning

paramGrid = ParamGridBuilder()\

.addGrid(rf.maxDepth, [2,4,10])\
.addGrid(rf.numTrees, [10, 50, 100])\
.build()

# Define cross validation model

crossval = CrossValidator(estimator=pipeline,
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estimatorParamMaps=paramGrid,
evaluator=MulticlassClassificationEvaluator(),
numFolds=5)

# Fit (train) the model
model = crossval.fit(dataFrame)

# Return the trained model
return model

Python source code below shows a simple spark template of a OneVsRest algorithm
(this function is part of several source code files).

def trainModelOneVsRest(dataFrame, dataFrameFeatureColNames):

# Assemble the input to produce the features column
assembler = VectorAssembler(inputCols=dataFrameFeatureColNames, outputCol="features")

#TODO
# Select the machine learning algorithm and its parameters
# In this case a Random Forest Tree Classifier has been selected
Ir = LogisticRegression(maxlIter = 100,
regParam = 0.01,
elasticNetParam = 0.8,
tol=1E-6, fitIntercept=True)
ovr = OneVsRest(classifier=Ir)

# Chain in a pipeline the transformations and machine learning algorithm
pipeline = Pipeline(stages = [assembler, ovr])

# TODO

# Create a Parameter Grid for Cross Validation

# Assign a range to the hyper parameter for fine-tuning

paramGrid = (ParamGridBuilder()
.addGrid(Ir.regParam, [0.01, 0.1, 0.3, 0.5])
.addGrid(Ir.maxlter, [10, 25, 100, 500])
.addGrid(Ir.elasticNetParam, [0.0, 0.1, 0.2, 0.8])
.build())

# Define cross validation model

crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=MulticlassClassificationEvaluator(),
numFolds=5)

# Fit (train) the model
model = crossval.fit(dataFrame)

# Return the trained model
return model
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9.3.1.2 Templates for Keras

Python source code below shows a simple template for Keras to define and fit a Neural
Network (this function is part of several source code files used for Electrolux test case).

Define a Neural Network

def model(input_shape):
Function creating the model's graph in Keras
Argument: input_shape -- shape of the model's input data (using Keras conventions)
Returns: model -- Keras model instance

# Define input shape
X_input = Input(shape = input_shape)

# Define first dense (fully connected) layer with 100 neurons and 'relu’ activation
X = Dense(100, input_dim=cnst.Tx, kernel_initializer="normal’, activation="relu")(X_input)

# Define hidden dense (fully connected) layers
X = Dense(30, kernel_initializer="normal’, activation="relu’)(X)
X = Dense(10, kernel_initializer="normal’, activation="relu’)(X)

# Define output layer with 'sigmoid' activation for binary classification
X = Dense(1, kernel_initializer="normal’, activation="sigmoid")(X)

# Finally build a return the model
model = Model(inputs = X_input, outputs = X)

return model

Compile and train the model

# Define the model invoking previous model
modelCurF08 = model(input_shape = [100])

# Compile the model for binary classification and adam training algorithm
modelCurF08.compile(loss='binary_crossentropy', optimizer='adam’, metrics=['accuracy'])

# Fit the model
modelCurF09.fit(X_trainCurF08, Y _trainCurF08, batch_size = 50, epochs = 500, shuffle=True,
class_weight = class_weightCurF08, validation_data=[X_devCurF08, Y_devCurF08])

9.3.2  Templates to Develop Predictive Analytics REST Web Service and Clients

This section (already included in D2.5 deliverable and reproduced here for clarity)
shows the templates to develop Predictive Analytics REST Web Services and clients
implemented in full prototype.

Service Specifications
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This section specifies the input parameters of the service and the specification of the
answer returned by service.

Service name

String SafirePrdAnalyticsPredictor

Parameters in the Request

String ipAddress — ldentifies the ip address where the service is located.
String port — Connection port to the service.

Long clientId — ldentifies the client’s request. Can be any number provided
by the client. This identification will be included back with the answer.

String clientTopic — Client topic is a string provided by the client. It is
simply a complement to the client’s request and might be the empty string.
This topic will be included back with the answer and can help the client to
indentify better the answer. An example of client’s topic may be
“Boil_detection_25-Oct-2018_16-51-00" that identifies a boiling experiment.

String modelName — Upon request, the service will (a) invoke and load a
previously trained predictive analytics model and (b) will call the model to
predict values according to dataFrameRowDataJSON parameter (see below).

String backendName — Indicates the backend that will process the
invocation. Allowed values are: spark or keras

String dataFrameColNamesJSON — Contains the dataframe column names in
JSON format, according to the following syntax:

{"dataFrameColNames": [ "namel", "name2",.... ]}
Example (three columns case):

{"dataFrameColNames":["1d", "text", "Label "]}

String dataFrameColTypesJSON — Contains the dataframe column types in
JSON format. Allowed types are integer, double, string, arraylnteger,
arrayDouble. Syntax is as follows:

{"dataFrameColTypes":["typel", "type2", ...]}
Example (three columns case):

{"dataFrameColTypes":["integer", "string"”, "double" ]}

String dataFrameRowDatalSON — Contains the dataframe rows in JSON
format. Each row must have the number of values specified in
dataFrameColNamesJSON  with its corresponding type specified in
dataFrameColTypesJSON. Syntax is as follows:
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{"dataFrameRowData":

[[rowldatal, rowldata2, ...],
[row2datal, row2data2, ...],
[row3datal, row3data2, ...],
1}

Example 1 (two rows with three columns of type integer, string, double):

{"dataFrameColNames":["id", "text", "Label "]}
{"dataFrameColTypes":["integer"”, "string"”, "double" ]}
{"dataFrameRowData":
[[7,"this 1s an example ssd”, 1.0],
[8,”another text”, 0.0]]}

Example 2 (two rows with one column of type arrayDouble):

{"dataFrameColNames": [ "currentValues"]}
{"dataFrameColTypes":["arrayDouble" ]}
{"dataFrameRowData":
[[[1.456, 2.3456, 3.2345, 1.3456]],
[[2.3737, 4.2829, 1.2876, 8.7625]]}

Answer given by the service
The service will always return a JSON string containing the following fields:

e long callCount - Represents an automatic counter with the number of times
the service has been requested since it was started (just informative purpose).

e long clientId- The client identification that was provided by the client in
the request.

e long clientTopic - The client topic that was provided by the client in the
request.

e String modelName - The predictive model that was provided by the client in
the request.

e String backendName - The backend that was provided by the client in the
request.

e String dataFrameRowDataPrediction]SON - In this parameter, the service
returns in this parameter the predicted values for each row received in the
request’s param dataFrameRowDatalSON. The syntax of the JSON string
(similar to that of dataFrameRowDataJsoN) is the following:

{"dataFrameRowDataPrediction”:
[[RowlPredictionl, RowlPrediction2, ...],
[Row2Predictionl, Row2Prediction2, ...],
[Row3Predictionl, Row3Prediction2, ...],

1}
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Example: (predicted values for three rows, where each predicted value is a
double):

{"dataFrameRowDataPrediction":
[[©.9878],
[e.45627],
[6.87265]
1}

Note: The number of predicted values per row and their types is implicitly
defined in the predictive model, but not defined in the request. Therefore, the
client receiving the answer must know the expected number and types of
fields.

e String errorDescription — The description of the error when the service
execution fails (retCode <> 0).

e int retCode — Return code value is O when the service execution succeed,
and non-zero otherwise.

Example of Request

The client sends a request as follows (Electrolux case example):

http://localhost:8080/SafirePrdAnalyticsPredictor?
clientId=1&
clientTopic=Boil_detection 26-10-2018 10-57-41&
modelName=electroluxNNTraineModelCurFo8.h5&
backendName=kerasé&
dataFrameColNamesJSON=
{"dataFrameColNames": [ "currentValues"]}&
dataFrameColTypesJSON=
{"dataFrameColTypes":["arrayDouble" ] }&
dataFrameRowDataJSON=
{"dataFrameRowData":[[[1.54418102, 1.48782741, ... ]]]}

Example of Answer
The service processes the request and answers with the following:

ClsSafirePrdAnalyticsPredictoriWebServiceAnswer {
callCount=1,
clientId=1,
clientTopic= Boil_detection_26-10-2018 10-57-41,
modelName=electroluxNNTraineModelCurFe8. h5,
backendName=keras,
prediction={"dataFrameRowDataPrediction":[[0.9015398025512695]]},

errorDescription="",
retCode=0}

In this particular case, the answer contains the prediction of the single sample passed as
parameter being boiling (90,15%).
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Invoking the Prediction Service from a Web Navigator
The Prediction Service is also callable from a Web navigator. Error! Reference source
ot found.Figure below shows a call to the service executed from a web navigator (in
this case Google Chrome) and the response given by the service.

@ localhost:8080/SafirePrdAnalyticc: X + B = x
& C @ localhost:8080/SafirePrdAnalyticsPredictor?clientld=18clientTopic=Boil_detection_*&modelName=electroluxNNTraineMo @,  ¥¢ e
{"callCount":1,"clientId":1,"clientTopic"”:"Boil detection_*","modelName":"electroluxNNTraineModelCurFes.hs5", "backendName": "keras”,
"dataFrameRowDataPrediction]sON™:"{\"dataFrameRowDataPrediction\":[[©.9015398025512695]]", "errorDescription™:"", "retCode":0}

Template for invocation from a Java Client Specifications
Source Code below represents templates for an easy development of REST Java clients.
The template is composed by the two classes described below.
Class ClsSafirePrdAnalyticsPredictorWebServiceAnswer
This class represents a Java client. Only the section with Topo must be modified by the
end-user using the template. The SAFIRE Predictive analytics REST Web Service
client for Electrolux test case in the full prototype has been developed with this
template.
@sSpringBootApplication
public class ClsSafireWebServiceRestClientTemplate {
private static final Logger log =
LoggerFactory.getLogger(ClsSafireWebServiceRestClientTemplate .class);
public static void main(String args[]) {
SpringApplication.run
(ClsSafireWebServiceRestClientTemplate .class);
}
@Bean
public RestTemplate restTemplate(RestTemplateBuilder builder) {
return builder.build();
}
@Bean
public CommandLineRunner run(RestTemplate restTemplate) throws Exception {
return args -> {
/I Call service
CallService(restTemplate);
3
}
private void CallService(RestTemplate restTemplate) {
I
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/I Define call parameters

String port = "8080";

long clientld = 1;

String topic = "Boil_detection_29-oct-2018_12-08-00";
String modelName = "electroluxNNTraineModelCurF08.h5";
String backendName = "keras";

// TODO

/I Generate the sample to predict

/I The key dataframe elements must be defined

/I The columns names, types and data values

/I Row Data is a list of data rows. The service will answer with

/I a prediction for each row.

String dataFrameColNamesJSON =
"{\"dataFrameColNames\":[\"currentVValues\"]}";

String dataFrameColTypesJSON =
"{\"dataFrameColTypes\":[\"arrayDouble\"]}";

String dataFrameRowDataJSON =
"{\"dataFrameRowData\":"
+ "[[[1.456, 2.3456, 3.2345, 1.3456]],"
+"[[2.3737, 4.2829, 1.2876, 8.7625]]}";

/I Encode the data frame elements

I This is necessary as they contain reserved chars for http requests

dataFrameColNamesJSON =
UriUtils.encodeQueryParam(dataFrameColNamesJSON,"UTF-8");

dataFrameCol TypesJSON =
UriUtils.encodeQueryParam(dataFrameColTypesJSON,"UTF-8");

dataFrameRowDataJSON =
UriUtils.encodeQueryParam(dataFrameRowDataJSON,"UTF-8");

// Build the call to the prediction service

String serviceCall =
"http://localhost:" + port + "/SafirePrdAnalyticsPredictor?" +
"clientld=" + String.valueOf(clientld) + "&" +
"clientTopic=" + topic + "&" +
"modelName=" + modelName + "&" +
"backendName=" + backendName + "&" +
"dataFrameColNamesJSON=" + dataFrameColNamesJSON + "&" +
"dataFrameColTypesJSON="+ dataFrameCol TypesJSON + "&" +
"dataFrameRowDataJSON="+ dataFrameRowDataJSON;

/I Call the prediction service
/I In this case the call is synchronous so the caller will be
/' blocked here waiting for the answer.
ClsSafirePrdAnalyticsPredictorWebServiceAnswer answer =
restTemplate.getForObject
(serviceCall,
ClsSafirePrdAnalyticsPredictorWebServiceAnswer.class);

// TODO

/I Process the answer

/I In this template just print to log
log.info(answer.toString());
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Class ClsSafirePrdAnalyticsPredictorWebServiceAnswer

This class represents the answer given by the prediction service and does not need any
modifications, and can be used as-is:

@JsonlgnoreProperties(ignoreUnknown = true)
public class ClsSafirePrdAnalyticsPredictorWebServiceAnswer {

/I Represents an automatic counter
/I with the number of times the

/I service has been requested
private long callCount;

/I'1d value passed by the caller
/I Will be returned back as it is
private long clientld;

/I Topic value passed by the caller
/I Will be returned back as it is
private String clientTopic;

/I Prediction Model hame
/I requested by the caller
private String modelName;

/I Prediction engine backend

/I requested by the caller

/I Allowed values are: spark, keras
private String backendName;

/I List of Predicted Data Frame Rows values

/I Contains a JSON list with the Predictied Rows

I produced by the model. It is responsible

/1 of the caller to interprete the meaning of

/I the values

private String dataFrameRowDataPredictionJSON;

/I Error description
/I when retCode =0
private String errorDescription;

/I 0-Success, <>0-Error
private int retCode;

public ClsSafirePrdAnalyticsPredictorWebServiceAnswer() {
}

public long getCallCount() {
return callCount;

public void setCallCount(long callCount) {
this.callCount = callCount;

}
public long getClientld() {
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return clientld;

public void setClientld(long clientld) {
this.clientld = clientld,;

}

public String getClientTopic() {
return clientTopic;

public void setClientTopic(String clientTopic) {
this.clientTopic = clientTopic;

}

public String getModelName() {
return modelName;

public void setModelName(String modelName) {
this.modelName = modelName;

}

public String getBackendName() {
return backendName;

public void setBackendName(String backendName) {
this.backendName = backendName;

}

public String getDataFrameRowDataPredictionJSON() {
return dataFrameRowDataPredictionJSON;

}

public void setDataFrameRowDataPredictionJSON(String dataFrameRowDataPredictionJSON) {
this.dataFrameRowDataPredictionJSON = dataFrameRowDataPredictionJSON;

}

public String getErrorDescription() {
return errorDescription;

public void setErrorDescription(String errorDescription) {
this.errorDescription = errorDescription;

}

public int getRetCode() {
return retCode;

public void setRetCode(int retCode) {
this.retCode = retCode;

}

@Override
public String toString() {
return "ClsSafirePrdAnalyticsPredictorWebServiceAnswer {" +

"callCount =" + Long.toString(callCount) +
", clientld =" + Long.toString(clientld) +
", clientTopic =" + clientTopic +
", modelName =" + modelName +
", backendName =" + backendName +
", prediction = " + dataFrameRowDataPredictionJSON +
", errorDescription =" + ((retCode != 0) ? errorDescription : "Ok™) +
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retCode =" + Long.toString(retCode) +
¥

Speed Specifications

The SAFIRE project aims at real-time processing and therefore Web Service execution
time must meet that requirement. However, real-time is a concept relative to the
application and the requirements can be different for each application.

For example, in the case of Electrolux boiling detection, real-time means basically the
order of one second. Execution speed depends obviously on the connection but also in
the predictive model complexity.

As a general requirement, for medium size models and good quality connection, real-
time requirement will be understood as execution time in the order of a few seconds.

JSON Message format to access Predictive Analytics Service via MQTT, NiFi,
Kafka.

The Predictive Analytics service is also accessible by sending messages to SAFIRE
cloud via MQTT, NiFi and KAFKA. A client can also send messages to SAFIRE cloud
requesting predictions and waiting for an answers from the cloud. Next two subsections
defined the format of the message to be sent and the answer received. Finally, third
subsection defines the meaning of the fields.

JSON Request Messsage format to be sent to SAFIRE Cloud by the client

Example of message for Electrolux test case representing the case of a hob requesting
prediction to check if the water is boiling. The hob sends one row of data with time,
energy, coil temp and currents. JSON field names are in green and values in blue.

{
"serviceName" . "SafirePrdAnalyticsPredictor”,
"timestamp" : "1517927276069",
“clientld" : "hob_2341",
"clientTopic” . "boil_detection",
"modelName" . "electroluxBoilDetectionNNTraineModelCur.h5",
"backendName" . "keras",

"dataFrameColNames"
["Time [s]","Energy [kJ]","T_Coil [C]","Cur_FO01 [A]","Cur_F02 [A]","Cur_F03
[A]","Cur_F04 [A]","Cur_FO05 [A]","Cur_FO06 [A]","Cur_F07 [A]","Cur_FO08 [A]","Cur_F09
[A]","Cur_F10 [A]","Cur_F11 [A]","Cur_F12 [A]","Cur_F13 [A]"],

"dataFrameColTypes"

["integer”,"double","double","double","double™,"double","double","double","double","doubl
e","double","double","double","double","double","double"],
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9.3.3.3

"dataFrameRowData"

[["0.043058454","453.1684169","116.0166168","64.86247126","61.84273338","58.6668516
8","54.45028941","50.73850822","46.71570587","44.01422437","40.96934446","38.679957
71","37.23618762","30.55048904","25.67852052","21.31361008"]]

JSON Answer Messsage format received by the client from SAFIRE Cloud

Example of message for Electrolux test case representing the answer of the predictive
service to the request shown in previous section, in this case telling that the probability
of water being boiling is 0.98.

{

"serviceName" . "SafirePrdAnalyticsPredictor”,
"timestamp" : "1517927276069",

"clientld"” : "hob_2341",

"clientTopic” . "boil_detection”,
"dataFrameRowDataPrediction"  : [["0.98"]],

“errorDescription” D

“rectCode”: “0”

Explanation of Fields
This section explains the meaning of fields in request and answer messages.

"serviceName". Same value sent in Request is received in Answer. Always must
be set to "SafirePrdAnalyticsPredictor™ as this is the name of the service.

"timestamp”. Same value sent in Request is received in Answer. Itis
the value returned by function now() in the computer when the client requests
the service.

"clientld". Same value sent in Request is received in Answer. An
identificator of the hob that is calling the service.

"clientTopic”. Same value sent in Request is received in Answer. The
message will be sent to this topic.

"modelName". Trained machine learning model to be invoked for prediction.

"backendName". Machine learning module backend to be invoked, must be
keywords "spark" or “keras".

"dataFrameColNames". List ([]) of data field names provided by the request.
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"dataFrameColTypes". List ([]) of data field types provided by the request. Must

be keywords "integer”, "double™, "string”, "arrayDouble" or "arrayInteger".

"dataFrameRowData". List of rows ([[]]) of data field values provided by the
request. Prediction service will answer with a list of predictions, one prediction
per row (a prediction may be composed by several values). In the example
above there is only one row, by several rows can be provided.

"dataFrameRowDataPrediction™. List of rows ([[]]) of predicted values. There is
one list of predicted values for each row. In the example above, as there is only
one row, only one list of predicted value is received. In this case that list
contains only one value that represents the probability of being boiling.

"errorDescription™. Description of the error returned by the service when no
prediction is returned (retCode <> 0).

“retCode”. 0 if the service success and predicts, and <> 0 otherwise and no
prediction was produced.
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